D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
QS3L384, QS3L2384
Q
Q
UALITY
S
EMICONDUCTOR,
I
NC.
FEATURES/BENEFITS
QuickSwitch
®
Products
High-Speed, Low Power
CMOS 10-Bit
Bus Switches
DESCRIPTION
QS3L384
QS3L2384
1
• Enhanced N channel FET with no inherent
diode to VCC
• 5Ω bidirectional switches connect inputs
to outputs
• Zero propagation delay (QS3L384);
zero ground bounce
• Undershoot clamp diodes on all switch
and control pins
• Ultra low power with 0.2µA typical I
CC
• QS3L2384 is 25Ω version for low noise
• Two enables control five bits each
• QS3L384 available in SOIC, QSOP and TSSOP
• QS3L2384 available in SOIC and QSOP
The QS3L384 and QS3L2384 provide a set of ten
high-speed CMOS TTL-compatible bus switches.
The low ON resistance of the QS3L384 allows inputs
to be connected to outputs without adding propaga-
tion delay and without generating additional ground
bounce noise. The Bus Enable (BE) signals turn the
switches on. Two bus enable signals are provided,
one for each of the upper and lower five bits of the two
10-bit buses.
The QS3L2384 adds an internal series resistor with
each switch to reduce reflection noise in high speed
applications. When closed, the switch acts as the
source (series) termination for the driver connected
to it.
2
APPLICATIONS
• Hot-swapping, hot-docking
(Application Note AN-13)
• Voltage translation
(5V to 3.3V; Application Note AN-11)
• Power conservation
• Capacitance reduction and isolation
• Bus isolation
• Clock gating
om
C
ny
pa
3
Figure 1. Functional Block Diagram
A0
B0
o
N
an
w
4
5
A4
A5
B4
B5
A9
BEA
BEB
B9
MDSL-00036-06
DECEMBER 3, 1998
QUALITY SEMICONDUCTOR, INC.
1
QS3L384, QS3L2384
Table 1. Pin Description
Name
A0-A9
B0-B9
BEA, BEB
I/O
I/O
I/O
I
Function
Bus A
Bus B
Bus Switch Enable
BEA
B0
A0
A1
B1
B2
A2
A3
B3
B4
A4
GND
1
2
3
4
5
6
7
8
9
10
11
12
24
23
22
21
20
19
18
17
16
15
14
13
V
CC
B9
A9
A8
B8
B7
A7
A6
B6
B5
A5
BEB
Figure 2. Pin Configuration
(All Pins Top View)
Table 2. Function Table
BEA
H
L
H
L
BEB
H
H
L
L
B0-B4
Hi-Z
A0-A4
Hi-Z
A0-A4
B5-B9
Hi-Z
Hi-Z
A5-A9
A5-A9
Function
Disconnect
Connect
Connect
Connect
Table 3. Absolute Maximum Ratings
om
C
ny
pa
Supply Voltage to Ground ................................................. –0.5V to 7.0V
DC Switch Voltage V
S
....................................................... –0.5V to 7.0V
DC Input Voltage V
IN
......................................................... –0.5V to 7.0V
AC Input Voltage (for a pulse width
≤
20ns) ................................. –3.0V
DC Output Current Max. Sink Current/Pin .................................. 120mA
Maximum Power Dissipation .................................................... 0.5 watts
T
STG
Storage Temperature ............................................... –65° to 150°C
o
N
an
w
Note:
ABSOLUTE MAXIMUM
CONTINUOUS RATINGS are
those values beyond which
damage to the device may occur.
Exposure to these conditions or
conditions beyond those
indicated may adversely affect
device reliability. Functional
operation under absolute-
maximum conditions in not
implied.
Table 4. Capacitance
T
A
= 25°C, f = 1MHz, V
IN
= 0V, V
OUT
= 0V
SOIC, QSOP and TSSOP
Typ
Max
3
5
5
7
Note:
Capacitance is guaranteed but not
production tested. For total capacitance
while the switch is ON, please see
Section 1 under “Input and Switch
Capacitance.”
Pins
Control Inputs
QuickSwitch Channels
(Switch OFF)
Unit
pF
pF
2
QUALITY SEMICONDUCTOR, INC.
MDSL-00036-06
DECEMBER 3, 1998
QS3L384, QS3L2384
Table 5. DC Electrical Characteristics Over Operating Range
Commercial: T
A
= –40°C to 85°C, V
CC
= 5.0V
±5%
Symbol
V
IH
V
IL
| I
IN
|
| I
OZ
|
R
ON
Parameter
Input HIGH Voltage
Input LOW Voltage
Input Leakage Current
Off-State Current (Hi-Z)
Switch ON Resistance
(2)
Military: T
A
= –55°C to 125°C, V
CC
= 5.0V
±10%
Min
2.0
—
—
—
3L384 (Com)
3L384 (Mil)
3L2384 (Com)
3L2384 (Mil)
R
ON
Switch ON Resistance
(2)
V
CC
= Min.,
V
IN
= 2.4V
I
ON
= 15mA
V
P
Pass Voltage
(3)
3L384 (Com)
3L384 (Mil)
3L2384 (Com)
3L2384 (Mil)
V
IN
= V
CC
= 5V, I
OUT
= –5µA
—
—
20
—
—
—
20
—
Typ
(1)
—
—
—
0.001
5
10
28
35
10
Max
—
0.8
1
1
7
15
40
45
15
Ω
Unit
V
V
µA
µA
Ω
Test Conditions
Guaranteed Logic HIGH
for Control Inputs
Guaranteed Logic LOW
for Control Inputs
0
≤
V
IN
≤
V
CC
0
≤
V
OUT
≤
V
CC
V
CC
= Min.,
V
IN
= 0.0V
I
ON
= 30mA
1
2
om
C
3.7
ny
pa
15
20
35
4
48
40
55
4.2
3
V
Notes:
1. Typical values indicate V
CC
= 5.0V and T
A
= 25°C.
2. For a diagram explaining the procedure for R
ON
measurement, please see Section 1 under
“DC Electrical Characteristics.” Max. value of R
ON
guaranteed, but not production tested.
3. Pass Voltage is guaranteed but not production tested.
o
N
an
w
16
14
12
10
8
6
4
2
0
0.0
4
Figure 3. Typical ON Resistance vs V
IN
at V
CC
= 5.0V (QS3L384)
5
R
ON
(ohms)
0.5
1.0
1.5
2.0
2.5
3.0
3.5
V
IN
(Volts)
Note:
For QS3L2384, add 23Ω to R
ON
shown.
MDSL-00036-06
DECEMBER 3, 1998
QUALITY SEMICONDUCTOR, INC.
3
QS3L384, QS3L2384
Table 6. Power Supply Characteristics Over Operating Range
Commercial: T
A
= –40°C to 85°C, V
CC
= 5.0V
±5%
C
LOAD
= 50pF, R
LOAD
= 500Ω unless otherwise noted.
Symbol
I
CCQ
∆I
CC
Q
CCD
Parameter
Quiescent Power
Supply Current
Power Supply Current
per Input HIGH
(3)
Dynamic Power Supply
Current per MHz
(4)
Military: T
A
= –55°C to 125°C, V
CC
= 5.0V
±10%
Test Conditions
(1)
V
CC
= Max., V
IN
= GND or V
CC
, f = 0
V
CC
= Max., V
IN
= 3.4V, f = 0
per Control Input
V
CC
= Max., A and B Pins Open, Control
Inputs Toggling @ 50% Duty Cycle
Typ
(2)
Max
0.2
—
—
3.0
2.5
0.25
Unit
µA
mA
mA/
MHz
Notes:
1. For conditions shown as Min. or Max., use the appropriate values specified under DC specifications.
2. Typical values are at V
CC
= 5V, 25°C ambient.
3. Per TTL driven input (V
IN
= 3.4V, control inputs only). A and B pins do not contribute to
∆I
CC
.
4. This current applies to the control inputs only and represents the current required to switch internal capacitance at the
specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter
is guaranteed, but not production tested.
Table 7. Switching Characteristics Over Operating Range
Commercial: T
A
= –40°C to 85°C, V
CC
= 5.0V
±5%
C
LOAD
= 50pF, R
LOAD
= 500Ω unless otherwise noted.
Military: T
A
= –55°C to 125°C, V
CC
= 5.0V
±10%
om
C
Max
0.25
(3)
0.75
(3)
6.5
7.5
5.5
6.5
Min
—
—
1.5
1.5
1.5
1.5
ny
pa
Max
1.25
(3)
1.75
(3)
7.5
8.5
5.5
6.5
QS3L384
Symbol
t
PLH
t
PHL
Description
(1)
Data Propagation Delay
(2,4)
Ai to Bi, Bi to Ai
Switch Turn-on Delay
BEA, BEB
to Ai, Bi
Switch Turn-off Delay
(2)
BEA, BEB
to Ai, Bi
QS3L2384
Typ
—
—
—
—
—
—
Unit
ns
ns
ns
t
PZL
t
PZH
t
PLZ
t
PHZ
o
N
an
w
Min
COM
MIL
COM
MIL
COM
MIL
—
—
1.5
1.5
1.5
1.5
Typ
—
—
—
—
—
—
Notes:
1. See Test Circuit and Waveforms. Minimums guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The time constant for the switch alone is of the order of 0.25ns for QS3L384 and 1.25ns for QS3L2384 for C
L
= 50pF.
4. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the
load capacitance. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very
little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the
driving circuit on the driving side of the switch and its interaction with the load on the driven side.
4
QUALITY SEMICONDUCTOR, INC.
MDSL-00036-06
DECEMBER 3, 1998