DC-DC
300 Watts
QSB Series
•
•
•
•
•
•
•
Wide Input Range
350 W Peak Power
High Efficiency
High Power Density
Baseplate-cooled
xppower.com
Remote On/Off & Remote Sense
3 Year Warranty
Specification
Input
Input Voltage Range
Input Current
Input Reverse Voltage
Protection
Input Filter
Input Surge
Undervoltage Lockout
• 24 V (9-36 V), 48 V (18-75 V), (see note 3)
• See table
• None
• Pi network
• 24 V: 50 VDC for 100 ms
48 V: 100 VDC for 100 ms
• 24 V: On ≥8.8 V, Off ≤8.0 V
48 V: On ≥17.0 V, Off ≤16.0 V
General
Efficiency
Isolation Voltage
• See table
• 1500 VDC Input to Output
1500 VDC Input to Case
1500 VDC Output to Case
•
•
•
•
•
Isolation Resistance
Isolation Capacitance
Switching Frequency
Power Density
MTBF
Output
• ±10%, see application notes
• ±1.5% max at full load
• ±0.2% max measured from high line
to low line
Load Regulation
• ±0.2% max measured from 0-100% load
Start Up Time
• 120 ms typical
Transient Response
• 5% max deviation, recovery to within
1% in 500 µs, 25% step load change
Ripple & Noise
• 3.3 & 5 V models: 100 mV pk-pk
12 & 15 V models: 150 mV pk-pk
24 & 28 V models: 280 mV pk-pk
20 MHz bandwidth (see note 1)
Overvoltage Protection
• 115-140%
Short Circuit Protection
• Continuous
Thermal Shutdown
• Case temperature >105 °C
Temperature
• ±0.03%/°C
Coefficient
Current Limit
• 115-140% nominal output
Remote On/Off
• See note 2. Output is off if Pin 2 is low
(<1.2 V) WRT -VIN, Pin 4.
Remote Sense
• Compensates up to 10% of Vout nominal,
total of output trim and remote sense
Output Voltage Trim
Initial Set Accuracy
Line Regulation
10
7
Ω
2000 pF typical
220 kHz typical
109 W/in
3
300 kHrs typical to MIL-HDBK-217F
at 25 °C, GB
Environmental
Operating Base Plate
Temperature
Storage Temperature
Operating Humidity
Cooling
Shock
Vibration
• -40 °C to +100 °C, see derating curve
•
•
•
•
-55 °C to +105 °C
Up to 90% non-condensing
Baseplate-cooled, see derating curve
30 g pk, halfsink wave for 18 ms
3 pulses per face, all 6 faces tested
• 5-500 Hz st 3 g, 10 mins per axis
EMC & Safety
Emissions
ESD Immunity
Radiated Immunity
EFT/Burst
Surge
Conducted Immunity
• EN55022, level A conducted, with external
components. See application note.
• EN61000-4-2, level 2, Perf Criteria B
• EN61000-4-3, 3 V/m, Perf Criteria A
• EN61000-4-4, level 1, Perf Criteria A
• EN61000-4-5, level 1, Perf Criteria A
• EN61000-4-6, 3 V rms, Perf Criteria A
Models & Ratings
Input Voltage Output Voltage
5.0 V
12.0 V
9-36 V
24.0 V
28.0 V
48.0 V
5.0 V
12.0 V
18-75 V
24.0 V
28.0 V
48.0 V
Output Current
Nom.
60.0 A
25.0 A
12.5 A
10.7 A
6.25 A
60.0 A
25.0 A
12.5 A
10.7 A
6.25 A
Peak
(5)
QSB300
Input Current
No Load
200 mA
200 mA
100 mA
100 mA
100 mA
100 mA
100 mA
80 mA
80 mA
80 mA
Full Load
14.21 A
13.89 A
14.21 A
14.11 A
14.37 A
6.94 A
6.94 A
6.98 A
6.94 A
7.02 A
Efficiency
(4)
88.0%
90.0%
88.0%
88.0%
87.0%
90.0%
90.0%
89.0%
90.0%
89.0%
Min. Capacitive
Load
470 µF
330 µF
220 µF
220 µF
220 µF
0 µF
0 µF
0 µF
0 µF
220 µF
Max. Capacitive
Load
10000 µF
10000 µF
4700 µF
4700 µF
2200 µF
10000 µF
10000 µF
4700 µF
4700 µF
2200 µF
Model Number
(2)
QSB30024S05
QSB30024S12
QSB30024S24
QSB30024S28
QSB30024S48
(
QSB30048S05
QSB30048S12
QSB30048S24
QSB30048S28
QSB30048S48
70.00 A
29.16 A
14.58 A
12.50 A
7.29 A
70.00 A
29.16 A
14.58 A
12.50 A
7.29 A
DC-DC
Notes
1. Output Ripple and Noise measured with 10 µF tantalum and 1 µF ceramic
capacitor across output.
2. Add suffix ‘N’ to the model number to receive the unit with negative logic
Remote On/Off.
3. Minimum of 1000 µF for 24 Vin and 220 µF for 48 Vin required on input.
4. Measured at nominal input voltage.
5. Peak Current is for max duration of 3s with 10% duty cycle. Average output
power not to exceed 300 W.
Mechanical Details
Mounting hole diameter:
0.126 (3.2) clearance hole
1.14
(29.0)
ø 0.08
(2.03)
Pins 1,4,
5&9
0.18 min.
(4.6)
4
1.40
(35.6)
2.00
(50.8)
0.60
(15.2)
2
1
3
BOTTOM VIEW
5
6
7
8
9
1.20
(30.5)
2.40
(61.0)
ø 0.04
(1.02)
Pins 2,3,
6,7 & 8
0.52
(13.2)
SIDE VIEW
Pin
1
2
3
4
5
6
7
8
9
PIN CONNECTIONS
Function
+Vin
Remote On/Off
Case
-Vin
-Vout
-Sense
Trim
+Sense
+Vout
1.90
(48.3)
2.28
(57.9)
Notes
1. All dimensions are in inches (mm)
2. Weight: 0.57 lbs (260 g) approx
3. Tolerances: X.XX = ±0.02 (X.X = ±0.5)
X.XXX = ±0.01 (X.XX = ±0.25)
Output Voltage Adjustment
The Trim input permits the user to adjust the output voltage up or
4
down according to the trim range specification (90% to 110% of
nominal output). This is accomplished by connecting an external
resistor between the +Vout and +Sense pin for trim up and between
the TRIM and -Sense pin for trim down, see figure:
The Trim pin should be left open if trimming is not being used. The
output voltage can be determined by the following equations:
Vf =
1.24 x
7.68 +
Rt x 33
Rt + 33
Rt x 33
Rt + 33
1
B
+Vin
+S
+
Vin
-
+Vout
C1
+
-Vout
-S
TRIM
Rv
C2
+
Load
Recommended Value of Rt is 6.8kΩ, therefore Vf = 0.525
Vout = ( Vnom + Rv ) x Vf
Rv =
Examples:
1. To trim 12 V unit up by 10%
E
E
E
-Vin
Rt
Vout
Vf
- Vnom
Rv =
13.2
0.525
- 12 = 13.145kΩ
2. To trim 24 V unit down by 10%
Rv =
19.2
0.525
- 24 = 17.14kΩ
DC-DC
Input Fusing and Safety Considerations
QSB300
The QSB300 series converters have no internal fuse. In order to achieve maximum safety and system protection, always use an input line fuse.
We recommended a 60 A time delay fuse for 24 Vin models and 30A for 48Vin models. It is recommended that the circuit have a transient voltage
suppressor diode ((TVS), Type SMCJ78A 1500 W or above) across the input terminal to protect the unit against surge or spike voltage and input
reverse voltage (as shown).
+Vin
+
Vin
-
TVS
Load
+Vout
-Vin
-Vout
EMC Considerations
Suggested Circuits for Conducted EMI Class A
L1
+
Vin
+
-
+Vin
+Vout
Load
+
C1
+
C2
DC/DC Converter
-Vin
-Vout
D
C1
C2
L1
220uF/100V
220uF/100V
1.5mH, Core: SM CM20 x 12 x 10
Remote ON/OFF Control
The converter’s output ON/OFF function can be controlled via Pin 2, Remote ON/OFF. The ON/OFF pin is internally pulled up through a resistor.
The output voltage is turned on, when Pin 2 is >3.5 VDC or <75 VDC. Output voltage turns off when Pin 2 is <1.2 VDC.
The maximum input current in the converter at idle mode is 10 mA.
O
E
+Vin
Vin
+
-
2
SW
(ON/OFF)
-Vin
QSB300
4
Application Notes
Thermal Resistance Information
Derating Curve
Maximum Power Dissipation vs Ambient Temperature and Air Flow without heatsink
50
45
Natural Convection
20 ft./min. (0.1 m/s)
100 ft./min. (0.5 m/s)
200 ft./min. (1.0 m/s)
300 ft./min. (1.5 m/s)
400 ft./min. (2.0 m/s)
500 ft./min. (2.5 m/s)
600 ft./min. (3.0 m/s)
700 ft./min. (3.5 m/s)
800 ft./min. (4.0 m/s)
0
10
20
30
40
50
60
70
80
90
100
QSB300
DC-DC
Power Dissipated ,Pd (W)
40
35
30
25
20
15
10
5
0
Air Flow Rate
Natural Convection
20 ft. / min (0.1 ms)
100 ft./min (0.5 ms)
200 ft./min (1.0 ms)
300 ft./min (1.5 ms)
400 ft./min (2.0 ms)
500 ft./min (2.5 ms)
600 ft./min (3.0 ms)
700 ft./min (3.5 ms)
800 ft./min (4.0 ms)
Typical R
ca
7.12 °C/W
6.21 °C/W
5.17 °C/W
4.29 °C/W
3.64 °C/W
2.96 °C/W
2.53 °C/W
2.37 °C/W
2.19 °C/W
R
ca
= Thermal resistance from case to ambient
Ambient Temperature ,T
a
(°C)
Example
Airflow required for QSB30048S05 at 45A output current and 35°C ambient
1.Calculate power dissipated
= [Power in – Power out] = [(5V*45A)/90% efficiency – 5V*45A] = 25 W
2.Use de-rating curve to establish airflow
Using 25 W dissipated power and 35 °C ambient, airflow is 600 ft/min
(3.0 m/s)
3.Use table to establish typical thermal resistance Rca
Airflow of 600ft/min gives typical Rca of 2.53 °C/W
4.Check that airflow is adequate to limit case temperature to 100 °C
maximum
Case temperature = Temperature rise + Ambient temperature
Temperature rise = Power dissipated * Typical thermal resistance Rca
= 25 W* 2.53 °C/W = 63.25 °C
Case temperature = 63.25 °C + 35 °C = 98.25 °C i.e. <100 °C
(°
Power Dissipate d vs Ambient Temperature and Air Flow with XP part ‘ICH HEATSINK’
50
45
N atural C onvection
20 ft./min. (0.1 m/s)
100 ft./min. (0.5 m/s)
Power D isspated, P
d
(Watts)
40
35
30
25
20
15
10
5
0
0
10
20
30
40
50
60
70
80
90
100
200 ft./min. (1.0 m/s)
300 ft./min. (1.5 m/s)
Air Flow Rate
Natural Convection
20 ft. / min (0.1 ms)
100 ft./min (0.5 ms)
200 ft./min (1.0 ms)
300 ft./min (1.5 ms)
400 ft./min (2.0 ms)
Typical R
ca
3.00 °C/W
1.44 °C/W
1.17 °C/W
1.04 °C/W
0.95 °C/W
400 ft./min. (2.0 m/s)
Am bient Temperature, T
a
(°C)
Example
Airflow required for QSB30048S12 at 20A output current and 65 °C ambient
1.Calculate power dissipated
= [Power in – Power out] = [(12V*20A)/90% efficiency – 12V*20A]
= 26.27 W
2.Use de-rating curve to establish airflow
Using 26.27 W dissipated power and 65 °C ambient, airflow is
200 ft/min (1.0 m/s)
3.Use table to establish typical thermal resistance Rca
Airflow if 200 ft/min gives typical Rca of 1.17 °C/W
4.Check that airflow is adequate to limit case temperature to 100 °C
maximum
Case temperature = Temperature rise + Ambient temperature
Temperature rise = Power dissipated * Typical thermal resistance Rca
= 26.67 W* 1.17 °C/W = 31.2 °C
Case temperature = 31.2 °C + 65 °C = 96.2 °C i.e. <100 °C
25 April 17