D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu r xmu ai s
o
a
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
Solved by
SPX2941
TM
1A Low Dropout Voltage Regulator
Adjustable Output, Fast Response
FEATURES
■
Adjustable Output Down To 1.25V
■
Low Quiescent Current
■
Guaranteed 1.5A Peak Output Current
■
Low Dropout Voltage of 280mV @ 1A
■
Extremely Tight Load and Line
Regulation
■
Extremely Fast Transient Response
■
Reverse-battery Protection
■
Internal Thermal and Current Limit
Protection
■
Zero Current Shutdown
■
Standard TO-220 and TO-263
packages
SPX2941
5 Pin TO-263
1 2 3 4 5
ADJUST
ENABLE
GND
V
IN
Now Available in Lead Free Packaging
APPLICATIONS
■
Powering VGA & Sound Card
■
LCD Monitors
■
USB Power Supply
■
Power PC Supplies
■
SMPS Post-Regulator
■
High Efficiency Linear Power Supplies
■
Battery Charger
■
Portable Instrumentation
■
Constant Current Regulators
■
Adjustable Power Supplies
DESCRIPTION
The SPX2941 is a 1A, accurate voltage regulator with a low drop out voltage of 280mV(typ.) at
1A. These regulators are specifically designed for low voltage applications that require a low
dropout voltage and a fast transient response. They are fully fault protected against over-current,
reverse battery, and positive and negative voltage transients. The SPX2941 is offered in 5-pin
TO-220 & TO-263 packages. For a 3A version, refer to the SPX29300 data sheet.
TYPICAL APPLICATIONS CIRCUIT
5
+
ADJ
R1
V
OUT
10 F
V
IN
4
6.8 F
+
EN
2
SPX2941
3
1
GND
R2
Figure 1. Adjustable Output Linear Regulator
Date: Sept 28-06 Rev E
SPX294 A Low Dropout Linear Regulator
© 2006 Sipex Corporation
V
OUT
ABSOLUTE MAXIMUM RATINGS
Lead Temperature (soldering, 5 seconds) ................260°C
Storage Temperature Range........................-65°C to +150°C
Operating Junction Temperature Range......-40°C to +125°C
Input Supply Voltage (N
OTE
6) .... .....................................16V
ELECTRICAL CHARACTERISTICS
V
IN
=V
OUT
+ 1V, I
OUT
=10mA, C
IN
=6.8 F, C
OUT
=10 F, T
A
= 25
°C,
unless otherwis specified. The boldface applies over the
junction temperature range. Adjustable versions are set at +5.0V.
PARAMETER
Reference Voltage
Adjust Pin Bias Current
Reference Voltage
Temperature Coefficient
Adjust Pin Bias Current
Temperature Coefficient
Line Regulation
Load Regulation
Dropout Voltage (Note1)
(except 1.8V version)
Ground Current (Note3)
Ground Pin Current at
Dropout
Current Limit
Output Noise Voltage
(N
OTE
4)
CONDITIONS
Adjustable version only
MIN.
1.228
1.215
TYP.
1.240
40
20
0.1
I
OUT
=10mA, (V
OUT
+1V) V
IN
16V
V
IN
=V
OUT
+1V, 10mA I
OUT
I
FULL
I
OUT
=100mA
I
OUT
=1A
I
OUT
=750mA, V
IN
=V
OUT
+1V
I
OUT
=1A
V
IN
=0.1V less than specified V
OUT
,
I
OUT
=10mA
V
OUT
=0V (Note2)
10Hz to 100kHz, I
OUT
=100mA,
C
L
=10 F
C
L
=33 F
Input Logic Voltage
V
IN
<10V
V
EN
=16V
V
EN
=0.8V
Regulator Output Current
in Shutdown
Thermal Resistance
TO-220
TO-263
(N
OTE
5)
10
0.2
0.3
70
280
12
18
1.2
1.5
2.2
400
260
0.8
100
600
750
1
2
500
1.0
1.5
200
550
25
MAX
1.252
1.265
80
120
UNIT
V
V
ppm/
°C
nA/°C
%
%
mV
mA
mA
A
V
RMS
V
A
A
A
LOW (OFF)
HIGH (ON)
ENABLE Input Pin Current
2.4
Junction to Case, at Tab
Junction to Ambient
3
29.3
°C/W
Junction to Case, at Tab
3
°C/W
Junction to Ambient
31.2
N
OTE
1: Dropout voltage is defined as the input to output differential at which the output voltage drops to 99%
of its nominal value.
N
OTE
2: V
IN
=V
OUT(NOMINAL)
+1V; for example, V
IN
=4.3V for a 3.3V regulator. Employ pulse-testing procedures to
minimize temperature rise.
N
OTE
3: Ground pin current is the regulator quiescent current. The total current drawn from the source is the
sum of the load and ground currents.
N
OTE
4: Thermal regulation is defined as the change in the output voltage at a time T after a change in power
dissipation is applied, excluding load or line regulation effects.
N
OTE
5: V
EN
0.8V and V
IN
16V, V
OUT
= 0.
N
OTE
6: Maximum positive supply voltage of 20V must be of limited duration ( <100ms) and duty cycle (<1%).
The maximum continuous supply voltage is 16V.
N
OTE
7: V
REF
V
OUT
(V
IN
-1), 2.5V V
IN
16V, 10 mA I
C
I
FL
, T
J
< T
JMAX
.
Date: Sept 28-06 Rev E
SPX294 A Low Dropout Linear Regulator
© 2006 Sipex Corporation
2
BLOCK DIAGRAM
IN
O.V
I
LIMIT
Reference
1.240V
+
-
28V
R1*
OUT
ADJ
EN
Thermal
Shutdown
R2*
GND
Figure 2. SPX2941 Block Diagram
PACKAGE PINOUTS
TO-263-5 Package (T5)
TO-220-5 Package (U5)
SPX2941
1) ADJUST
2) Enable
3) GND
4) V
IN
5) V
OUT
1 2 3 4 5
1
2
3
4 5
Top View
Top View
Note: Tab is internally connected to GND
ORDERING INFORMATION
Date: Sept 28-06 Rev E
©
PART NUMBER ....................
SPX294 A Low Dropout Linear Regulator
ACCURACY ... OUTPUT VOLTAGE ......................
2006 Sipex Corporation
PACKAGE
SPX2941T5 ............................ 3% ........................ Adj ............................. 5 lead TO-263
TYPICAL PERFORMANCE CHARACTERISTICS
3.320
3.315
3.310
3.310
3.305
3.300
3.295
3.290
3.285
3.280
0.00
V
OUT
(V)
3.300
3.295
3.290
3.285
3.280
4
6
8
10
12
3.3V Device
IL = 10mA
CL = 10 F
14
16
V
OUT
(V)
3.305
3.3V Device
V
IN
= 4.3V
CL = 10 F
0.25
0.50
0.75
1.00
1.25
1.50
V
IN
(V)
IL (A)
Figure 3. Line Regulation for 3.3V Device
Figure 4. Load Regulation for 3.3V Device
80.0
70.0
60.0
300
280
IGnd ( A)
IGnd (mA)
50.0
40.0
30.0
20.0
10.0
0.0
0.00
0.25
0.50
0.75
1.00
260
240
220
3.3V Device
V
IN
= 4.3V
CL = 10 F
1.25
1.50
200
180
3.3V Device
IL = 10mA
CL = 10 F
4
6
8
10
12
14
16
IL (A)
V
IN
(V)
Figure 5. Ground Current vs Load Current for 3.3V Device Figure 6. Ground Current vs Input Current
100
90
70
80
600
500
V
DROPOUT
(mV)
IGnd (mA)
400
300
200
100
0
0.00
60
50
40
30
20
10
0
0.00
0.25
0.50
0.75
1.00
3.3V Device
V
IN
= 3.2V
CL = 10 F
1.25
1.50
3.3V Device
CL = 10 F
0.25
0.50
0.75
1.00
1.25
1.50
IL (A)
IL (A)
Figure 7. Ground Current vs Load Current in Dropout
Date: Sept 28-06 Rev E
Figure 8. Dropout Voltage vs Load Current for 3.3V
Device
© 2006 Sipex Corporation
SPX294 A Low Dropout Linear Regulator
4