首页 > 器件类别 > 电源/电源管理 > 电源电路

SPX3940M3-3-3

Regulator, 1 Output, BIPolar,

器件类别:电源/电源管理    电源电路   

厂商名称:Exar

下载文档
器件参数
参数名称
属性值
是否Rohs认证
不符合
零件包装代码
TO-261AA
包装说明
, SOT-223
针数
4
Reach Compliance Code
unknown
可调性
FIXED
标称回动电压 1
0.28 V
最大绝对输入电压
16 V
最大电网调整率
0.033%
最大负载调整率
0.0495%
输出次数
1
端子数量
3
工作温度TJ-Max
125 °C
工作温度TJ-Min
-40 °C
最大输出电流 1
1 A
标称输出电压 1
3.3 V
封装主体材料
PLASTIC/EPOXY
封装等效代码
SOT-223
认证状态
Not Qualified
表面贴装
YES
技术
BIPOLAR
最大电压容差
3.5%
Base Number Matches
1
文档预览
SPX3940
1A Low Dropout Voltage Regulator
Fixed Output, Fast Response
FEATURES
1% Output Accuracy SPX3940A
Guaranteed 1.5A Peak Current
Low Quiescent Current
Low Dropout Voltage of 280mV at 1A
Extremely Tight Load and Line Regulation
Extremely Fast Transient Response
Reverse-battery Protection
Internal Thermal Protection
Internal Short Circuit Current Limit
Replacement for LM3940
Standard SOT-223, TO-220
and TO-263 packages
SPX3940
3 Pin TO-263
1
2
3
V
IN
GND
V
OUT
Now Available in Lead Free Packaging
APPLICATIONS
VGA & Sound Card
Automotive Electronics
LCD Monitors
Cordless Telephones
Power PC
TM
Supplies
SMPS Post-Regulator
Laptop, Palmtop, and Notebook Computer
High Efficiency Linear Power Supplies
Constant Current Regulators
Portable Instrumentation
DESCRIPTION
The SPX3940 is a 1A, accurate voltage regulators with a low drop out voltage of 280mV(typical)
at 1A. These regulators are specifically designed for low voltage applications that require a low
dropout voltage and a fast transient response. They are fully fault protected against over-current,
reverse battery, and positive and negative voltage transients.
The SPX3940 is offered in 3-pin SOT-223, TO-220 & TO-263 packages. For a 3A version, refer
to the SPX29300 data sheet.
TYPICAL APPLICATIONS CIRCUIT
V
IN
6.8µF
+
1
SPX3940
2
3
+
10µF
V
OUT
Figure 1. Fixed Output Linear Regulator.
Date: 4/14/06 Rev A
SPX3940 1A Low Dropout Voltage Regulator
© Copyright 2006 Sipex Corporation
1
ABSOLUTE MAXIMUM RATINGS
Lead Temperature (soldering, 5 seconds) ................................. 260°C
Storage Temperature Range ..................................... -65°C to +150°C
Operating Junction Temperature Range ................... -40°C to +125°C
Input Voltage (Note 5) ................................................................... 16V
ELECTRICAL CHARACTERISTICS
At V
IN
=V
OUT
+ 1V and I
OUT
= 10 mA, C
IN
= 6.8
µF,
C
OUT
= 10µF; T
A
= 25°C, unless otherwise specified.
The Boldface applies over the junction temperature range. Adjustable versions are set at 5.0V.
PARAMETER
1.8V Version
Output Voltage
2.5V Version
Output Voltage
3.3V Version
Output Voltage
5.0V Version
Output Voltage
All Voltage Options
Line Regulation
Load Regulation
∆V
∆T
Dropout Voltage (Note 1)
(except 1.8V version)
Ground Current (Note 3)
I
GNDDO
Ground Pin
Current at Dropout
Current Limit
Output Noise Voltage
(10Hz to 100kHz)
I
L
=100mA
Thermal Resistance
I
O
=10mA, (V
OUT
+1V)≤V
IN
≤16V
V
IN
=V
OUT
+1V, 10mA≤I
OUT
≤1A
Output Voltage
Temperature Coef.
I
O
=100mA
I
O
=1A
I
O
=750mA, V
IN
=V
OUT
, + 1V
I
O
=1A
V
IN
=0.1V less than specified V
OUT
I
OUT
= 10mA
V
OUT
=0V (Note 2)
C
L
= 10µF
C
L
=33µF
TO-220 Junction to Case, at Tab
TO-220 Junction to Ambient
TO-263 Junction to Case, at Tab
TO-263 Junction to Ambient
SOT-223 Junction to Case, at Tab
SOT-223 Junction to Ambient
0.2
0.3
20
70
280
12
18
1.2
2.2
400
260
3
29.4
3
31.4
15
62.3
°C/W
°C/W
°C/W
1.5
1.5
1.0
1.5
100
200
550
25
1.0
1.5
100
200
550
25
mA
mA
A
µV
RMS
%
%
ppm/°C
mV
I
OUT
= 10mA
10mA≤I
OUT
≤1A,
6V≤V
IN
≤16V
5.0
5.0
4.950
4.875
5.050
5.125
4.900
4.825
5.100
5.175
V
I
OUT
= 10mA
10mA≤I
OUT
≤1A,
6V≤V
IN
≤16V
3.3
3.3
3.267
3.217
3.333
3.383
3.234
3.184
3.366
3.416
V
I
OUT
= 10mA
10mA≤I
OUT
≤1A,
6V≤V
IN
≤16V
2.5
2.5
2.475
2.437
2.525
2.563
2.450
2.412
2.550
2.588
V
I
OUT
= 10mA
10mA≤I
OUT
≤1A,
6V≤V
IN
≤16V
1.8
1.8
1.782
1.755
1.818
1.845
1.764
1.737
1.836
1.863
V
CONDITIONS
TYP
MIN
MAX
SPX3940A (1%)
MIN
MAX
SP3940 (2%)
UNITS
NOTES:
Note 1: Dropout voltage is defined as the input to output differential when the output voltage drops to 99% of its normal value.
Note 2: V
IN
=V
OUT (NOMINAL)
+ 1V. For example, use V
IN
=4.3V for a 3.3V regulator. Employ pulse-testing procedures to minimize temperature rise.
Note 3: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the load current to the ground current.
Note 4: Thermal regulation is defined as the change in the output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects.
Note 5: Maximum positive supply voltage of 20V must be of limited duration (<100ms) and duty cycle (<1%). The maximum continuous supply voltage is 16V.
Date: 4/14/06 Rev A
SPX3940 1A Low Dropout Voltage Regulator
© Copyright 2006 Sipex Corporation
2
BLOCK DIAGRAM
IN
O.V
I
LIMIT
Reference
1.240V
+
-
Ibias
28V
R1
OUT
Thermal
Shutdown
R2
GND
TYPICAL PERFORMANCE CHARACTERISTICS
3.310
3.320
3.315
3.310
3.305
3.300
V
OUT
(V)
V
OUT
(V)
3.305
3.300
3.295
3.290
3.285
3.280
4
6
8
10
V
IN
(V)
12
14
16
3.3V Device
IL = 10mA
CL = 10µF
3.295
3.290
3.285
3.280
0
0.25
0.5
0.75
IL (A)
1
1.25
1.5
3.3V Device
IL=4.3mA
CL=10µF
Figure 2. Line Regulation
Figure 3. Load Regulation
80.0
70.0
60.0
I
GND
(mA)
I
GND
(µA)
100
95
90
85
80
3.3V Device
IL = 10 mA
CL = 10µF
50.0
40.0
30.0
20.0
10.0
0.0
0
0.25
0.5
0.75
1
3.3V Device
V
IN
= 4.3V
CL = 10µF
1.25
1.5
75
70
-40
-20
0
20
40
V
IN
(V)
60
80
100
120
IL (A)
Figure 4. Ground Current vs Load Current
Figure 5. Ground Current vs Input Voltage
Date: 4/14/06 Rev A
SPX3940 1A Low Dropout Voltage Regulator
© Copyright 2006 Sipex Corporation
3
TYPICAL PERFORMANCE CHARACTERISTICS
100
90
80
V Dropout (mV)
600
500
400
300
200
100
3.3V Device
CL = 10µF
I
GND
(mA)
70
60
50
40
30
20
10
0
0
0.25
0.5
0.75
1
1.25
1.5
3.3 Device
V
IN
= 3.2V
CL = 10µF
0
0
0.25
0.5
0.75
IL (A)
1
1.25
1.5
IL(A)
Figure 6. Ground Current vs Load Current in Dropout
Figure 7. Dropout Voltage vs Load Current
280
270
260
250
V
OUT
(V)
3.320
3.310
3.300
3.290
3.280
3.270
3.260
3.250
3.240
3.230
3.220
-40
3.3V Device
V
IN
= 4.3V
IL = 10mA
CL = 10µF
-20
0
20
40
60
80
100
120
I
GND
(µA)
240
230
220
210
200
190
180
-40
-20
0
20
40
60
80
3.3V Device
V
IN
= 4.3V
IL = 10mA
CL = 10µF
100
120
Temperature (°C)
Temperature (°C)
Figure 8. Ground Current vs Temperature at
I
LOAD
= 10mA
Figure 9. Output Voltage vs Temperature at
I
LOAD
=10mA
7.00
6.80
6.60
I
GND
(mA)
6.40
6.20
6.00
5.80
5.60
5.40
5.20
5.00
-40
-20
0
20
40
60
80
100
120
3.3V Device
V
IN
= 4.3V
IL = 500mA
CL = 10µF
30
29
28
I
GND
(mA)
27
26
25
24
23
22
21
20
-40
-20
0
20
40
60
80
3.3V Device
V
IN
= 3.2V
IL = 750mA
CL = 10µF
100
120
Temperature (°C)
Temperature (°C)
Figure 10. Ground Current vs Temperature at
I
LOAD
=500mA
Figure 11. Ground Current vs Temperature in Dropout
at I
LOAD
=750mA
Date: 4/14/06 Rev A
SPX3940 1A Low Dropout Voltage Regulator
© Copyright 2006 Sipex Corporation
4
TYPICAL PERFORMANCE CHARACTERISTICS
52.0
50.0
48.0
100
95
90
I
GND
mA)
I
GND
(mA)
46.0
44.0
42.0
40.0
38.0
36.0
-40
-20
0
20
40
60
3.3V Device
V
IN
= 4.3V
IL=1.5A
CL = 10µF
80
100
120
85
80
75
70
-40
3.3V Device
V
IN
= 3.2V
IL = 1.5A
CL = 10µF
-20
0
20
40
60
80
100
120
Temperature (°C)
Temperature (°C)
Figure 12. Ground Current vs Temperature at I
LOAD
= 1.5A
Figure 13. Ground Current vs Temperature in Dropout
at I
LOAD
=1.5A
350
330
310
500
480
V
DROPOUT
(mV)
290
270
250
230
210
190
170
150
-40
-20
0
20
40
60
80
100
120
3.3V Device
IL = 750mA
CL = 10µF
V
DROPOUT
(mV)
460
440
420
400
380
360
340
320
-40
-20
0
20
40
60
80
100
120
3.3V Device
IL = 1.5A
CL = 10µF
Temperature (°C)
Temperature (°C)
Figure 14. Dropout Voltage vs Temperature at
I
LOAD
= 750mA
Figure 15. Dropout Voltage vs Temperature at
I
LOAD
= 1.5mA
35
30
25
2.00
1.90
1.80
1.70
1.60
3.3V Device
V
IN
= 3.2V
IL = 750mA
CL = 10µF
I
EN
(µA)
20
V
TH
(V)
1.50
1.40
1.30
1.20
1.10
1.00
-40
15
10
5
0
-40
-20
0
20
40
60
80
3.3V Device
V
IN
= 3.2V
IL = 750mA
CL = 10µF
100
120
-20
0
20
40
60
80
100
120
Temperature (°C)
Temperature (°C)
Figure 16. Enable Current vs Temperature for V
EN
= 16V
Figure 17. Enable Threshold vs Temperature
Date: 4/14/06 Rev A
SPX3940 1A Low Dropout Voltage Regulator
© Copyright 2006 Sipex Corporation
5
查看更多>
STM32定时器的捕获通道的“边沿检测器”的疑惑
STM32定时器的捕获通道的“边沿检测器”,是如何检测识别边沿的?例如:我要检测信号上升沿的话,我的...
huixianfxt stm32/stm8
USB2.0高速收发器 ULPI接口实现
usb2.0高速收发器 和FPGA连接 需要在FPGA内部设计ULPI接口 看了USB3300的资料...
xiha FPGA/CPLD
射频差分信号走线绕线等长问题
两个芯片之间需要靠差分方式相连,但是在画PCB时为了保持等长,有如图四种连接方式,请问哪一种更好一些...
小二红 RF/无线
DSP2407中A0~A15和D0~D15怎么使用?
不扩展存储器时怎么做IO口用?只要能控制某个脚的高低就行 DSP2407中A0~A15和D0~D15...
huifei 嵌入式系统
(B题)MMC-1 使用常见问题
本帖最后由 paulhyde 于 2014-9-15 09:33 编辑 如果是2009 NEC电...
hitliye 电子竞赛
#来聊天啦#你在设计过程中是怎么保证“电源完整性”的??
过去我们更关注在 信号完整性 ,但现在越来越多的人意识到 电源完整性 也一样重要! 那么,...
okhxyyo 电源技术
热门器件
热门资源推荐
器件捷径:
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV AW AX AY AZ B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF BG BH BI BJ BK BL BM BN BO BP BQ BR BS BT BU BV BW BX BY BZ C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF CG CH CI CJ CK CL CM CN CO CP CQ CR CS CT CU CV CW CX CY CZ D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF DG DH DI DJ DK DL DM DN DO DP DQ DR DS DT DU DV DW DX DZ
需要登录后才可以下载。
登录取消