首页 > 器件类别 >

SST39VF040-45-4I-WKE

512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit (x8) Multi-Purpose Flash

厂商名称:SST

厂商官网:http://www.ssti.com

下载文档
文档预览
512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit (x8) Multi-Purpose Flash
SST39LF512 / SST39LF010 / SST39LF020 / SST39LF040
SST39VF512 / SST39VF010 / SST39VF020 / SST39VF040
SST39LF/VF512 / 010 / 020 / 0403.0 & 2.7V 512Kb / 1Mb / 2Mb / 4Mb (x8) MPF memories
Data Sheet
FEATURES:
• Organized as 64K x8 / 128K x8 / 256K x8 / 512K x8
• Single Voltage Read and Write Operations
– 3.0-3.6V for SST39LF512/010/020/040
– 2.7-3.6V for SST39VF512/010/020/040
• Superior Reliability
– Endurance: 100,000 Cycles (typical)
– Greater than 100 years Data Retention
• Low Power Consumption
(typical values at 14 MHz)
– Active Current: 5 mA (typical)
– Standby Current: 1 µA (typical)
• Sector-Erase Capability
– Uniform 4 KByte sectors
• Fast Read Access Time:
– 45 ns for SST39LF512/010/020/040
– 55 ns for SST39LF020/040
– 70 ns for SST39VF512/010/020/040
• Latched Address and Data
• Fast Erase and Byte-Program:
– Sector-Erase Time: 18 ms (typical)
– Chip-Erase Time: 70 ms (typical)
– Byte-Program Time: 14 µs (typical)
– Chip Rewrite Time:
1 second (typical) for SST39LF/VF512
2 seconds (typical) for SST39LF/VF010
4 seconds (typical) for SST39LF/VF020
8 seconds (typical) for SST39LF/VF040
• Automatic Write Timing
– Internal V
PP
Generation
• End-of-Write Detection
– Toggle Bit
– Data# Polling
• CMOS I/O Compatibility
• JEDEC Standard
– Flash EEPROM Pinouts and command sets
• Packages Available
– 32-lead PLCC
– 32-lead TSOP (8mm x 14mm)
– 48-ball TFBGA (6mm x 8mm)
– 34-ball WFBGA (4mm x 6mm) for 1M and 2M
• All devices are RoHS compliant
PRODUCT DESCRIPTION
The SST39LF512, SST39LF010, SST39LF020, SST39LF040
and SST39VF512, SST39VF010, SST39VF020, SST39VF040
are 64K x8, 128K x8, 256K x8 and 5124K x8 CMOS Multi-Pur-
pose Flash (MPF) manufactured with SST’s proprietary, high per-
formance CMOS SuperFlash technology. The split-gate cell
design and thick-oxide tunneling injector attain better reliability and
manufacturability compared with alternate approaches. The
SST39LF512/010/020/040 devices write (Program or Erase) with
a 3.0-3.6V power supply. The SST39VF512/010/020/040 devices
write with a 2.7-3.6V power supply. The devices conform to
JEDEC standard pinouts for x8 memories.
Featuring high performance Byte-Program, the
SST39LF512/010/020/040 and SST39VF512/010/020/
040 devices provide a maximum Byte-Program time of 20
µsec. These devices use Toggle Bit or Data# Polling to indi-
cate the completion of Program operation. To protect
against inadvertent write, they have on-chip hardware and
Software Data Protection schemes. Designed, manufac-
tured, and tested for a wide spectrum of applications, they
are offered with a guaranteed typical endurance of
100,000 cycles. Data retention is rated at greater than 100
years.
The SST39LF512/010/020/040 and SST39VF512/010/
020/040 devices are suited for applications that require
convenient and economical updating of program, configu-
©2010 Silicon Storage Technology, Inc.
S71150-14-000
01/10
1
ration, or data memory. For all system applications, they
significantly improves performance and reliability, while low-
ering power consumption. They inherently use less energy
during Erase and Program than alternative flash technolo-
gies. The total energy consumed is a function of the
applied voltage, current, and time of application. Since for
any given voltage range, the SuperFlash technology uses
less current to program and has a shorter erase time, the
total energy consumed during any Erase or Program oper-
ation is less than alternative flash technologies. These
devices also improve flexibility while lowering the cost for
program, data, and configuration storage applications.
The SuperFlash technology provides fixed Erase and Pro-
gram times, independent of the number of Erase/Program
cycles that have occurred. Therefore the system software
or hardware does not have to be modified or de-rated as is
necessary with alternative flash technologies, whose Erase
and Program times increase with accumulated Erase/Pro-
gram cycles.
To meet surface mount requirements, the SST39LF512/
010/020/040 and SST39VF512/010/020/040 devices are
offered in 32-lead PLCC and 32-lead TSOP packages. The
SST39LF/VF010 and SST39LF/VF020 are also offered in
a 48-ball TFBGA package. See Figures 2, 3, 4, and 5 for
pin assignments.
The SST logo and SuperFlash are registered trademarks of Silicon Storage Technology, Inc.
MPF is a trademark of Silicon Storage Technology, Inc.
These specifications are subject to change without notice.
512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit Multi-Purpose Flash
SST39LF512 / SST39LF010 / SST39LF020 / SST39LF040
SST39VF512 / SST39VF010 / SST39VF020 / SST39VF040
Data Sheet
Device Operation
Commands are used to initiate the memory operation func-
tions of the device. Commands are written to the device
using standard microprocessor write sequences. A com-
mand is written by asserting WE# low while keeping CE#
low. The address bus is latched on the falling edge of WE#
or CE#, whichever occurs last. The data bus is latched on
the rising edge of WE# or CE#, whichever occurs first.
edge of the sixth WE# pulse. The internal Erase operation
begins after the sixth WE# pulse. The End-of-Erase can be
determined using either Data# Polling or Toggle Bit meth-
ods. See Figure 11 for timing waveforms. Any commands
written during the Sector-Erase operation will be ignored.
Chip-Erase Operation
The SST39LF512/010/020/040 and SST39VF512/010/
020/040 devices provide a Chip-Erase operation, which
allows the user to erase the entire memory array to the ‘1’s
state. This is useful when the entire device must be quickly
erased.
The Chip-Erase operation is initiated by executing a six-
byte Software Data Protection command sequence with
Chip-Erase command (10H) with address 5555H in the last
byte sequence. The internal Erase operation begins with
the rising edge of the sixth WE# or CE#, whichever occurs
first. During the internal Erase operation, the only valid read
is Toggle Bit or Data# Polling. See Table 4 for the command
sequence, Figure 12 for timing diagram, and Figure 20 for
the flowchart. Any commands written during the Chip-
Erase operation will be ignored.
Read
The Read operation of the SST39LF512/010/020/040 and
SST39VF512/010/020/040 device is controlled by CE#
and OE#, both have to be low for the system to obtain data
from the outputs. CE# is used for device selection. When
CE# is high, the chip is deselected and only standby power
is consumed. OE# is the output control and is used to gate
data from the output pins. The data bus is in high imped-
ance state when either CE# or OE# is high. Refer to the
Read cycle timing diagram for further details (Figure 6).
Byte-Program Operation
The SST39LF512/010/020/040 and SST39VF512/010/
020/040 are programmed on a byte-by-byte basis. Before
programming, the sector where the byte exists must be
fully erased. The Program operation is accomplished in
three steps. The first step is the three-byte load sequence
for Software Data Protection. The second step is to load
byte address and byte data. During the Byte-Program
operation, the addresses are latched on the falling edge of
either CE# or WE#, whichever occurs last. The data is
latched on the rising edge of either CE# or WE#, whichever
occurs first. The third step is the internal Program operation
which is initiated after the rising edge of the fourth WE# or
CE#, whichever occurs first. The Program operation, once
initiated, will be completed, within 20 µs. See Figures 7 and
8 for WE# and CE# controlled Program operation timing
diagrams and Figure 17 for flowcharts. During the Program
operation, the only valid reads are Data# Polling and Tog-
gle Bit. During the internal Program operation, the host is
free to perform additional tasks. Any commands written
during the internal Program operation will be ignored.
Write Operation Status Detection
The SST39LF512/010/020/040 and SST39VF512/010/
020/040 devices provide two software means to detect the
completion of a Write (Program or Erase) cycle, in order to
optimize the system write cycle time. The software detec-
tion includes two status bits: Data# Polling (DQ
7
) and Tog-
gle Bit (DQ
6
). The End-of-Write detection mode is enabled
after the rising edge of WE# which initiates the internal Pro-
gram or Erase operation.
The actual completion of the nonvolatile write is asynchro-
nous with the system; therefore, either a Data# Polling or
Toggle Bit read may be simultaneous with the completion
of the Write cycle. If this occurs, the system may possibly
get an erroneous result, i.e., valid data may appear to con-
flict with either DQ
7
or DQ
6
. In order to prevent spurious
rejection, if an erroneous result occurs, the software routine
should include a loop to read the accessed location an
additional two (2) times. If both reads are valid, then the
device has completed the Write cycle, otherwise the rejec-
tion is valid.
Sector-Erase Operation
The Sector-Erase operation allows the system to erase the
device on a sector-by-sector basis. The sector architecture
is based on uniform sector size of 4 KByte. The Sector-
Erase operation is initiated by executing a six-byte com-
mand sequence with Sector-Erase command (30H) and
sector address (SA) in the last bus cycle. The sector
address is latched on the falling edge of the sixth WE#
pulse, while the command (30H) is latched on the rising
©2010 Silicon Storage Technology, Inc.
S71150-14-000
01/10
2
512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit Multi-Purpose Flash
SST39LF512 / SST39LF010 / SST39LF020 / SST39LF040
SST39VF512 / SST39VF010 / SST39VF020 / SST39VF040
Data Sheet
Data# Polling (DQ
7
)
When the SST39LF512/010/020/040 and SST39VF512/
010/020/040 are in the internal Program operation, any
attempt to read DQ
7
will produce the complement of the
true data. Once the Program operation is completed, DQ
7
will produce true data. Note that even though DQ
7
may
have valid data immediately following completion of an
internal Write operation, the remaining data outputs may
still be invalid: valid data on the entire data bus will appear
in subsequent successive Read cycles after an interval of 1
µs. During internal Erase operation, any attempt to read
DQ
7
will produce a “0”. Once the internal Erase operation is
completed, DQ
7
will produce a “1”. The Data# Polling is
valid after the rising edge of fourth WE# (or CE#) pulse for
Program operation. For Sector- or Chip-Erase, the Data#
Polling is valid after the rising edge of sixth WE# (or CE#)
pulse. See Figure 9 for Data# Polling timing diagram and
Figure 18 for a flowchart.
Software Data Protection (SDP)
The SST39LF512/010/020/040 and SST39VF512/010/
020/040 provide the JEDEC approved Software Data Pro-
tection scheme for all data alteration operation, i.e., Pro-
gram and Erase. Any Program operation requires the
inclusion of a series of three-byte sequence. The three-byte
load sequence is used to initiate the Program operation,
providing optimal protection from inadvertent Write opera-
tions, e.g., during the system power-up or power-down.
Any Erase operation requires the inclusion of six-byte load
sequence. These devices are shipped with the Software
Data Protection permanently enabled. See Table 4 for the
specific software command codes. During SDP command
sequence, invalid commands will abort the device to read
mode, within T
RC.
Product Identification
The Product Identification mode identifies the devices as
the SST39LF/VF512, SST39LF/VF010, SST39LF/VF020
and SST39LF/VF040 and manufacturer as SST. This
mode may be accessed by software operations. Users
may use the Software Product Identification operation to
identify the part (i.e., using the device ID) when using multi-
ple manufacturers in the same socket. For details, see
Table 4 for software operation, Figure 13 for the Software
ID Entry and Read timing diagram, and Figure 19 for the
Software ID entry command sequence flowchart.
TABLE 1: Product Identification
Address
Manufacturer’s ID
Device ID
SST39LF/VF512
SST39LF/VF010
SST39LF/VF020
SST39LF/VF040
0001H
0001H
0001H
0001H
D4H
D5H
D6H
D7H
T1.1 1150
Toggle Bit (DQ
6
)
During the internal Program or Erase operation, any con-
secutive attempts to read DQ
6
will produce alternating ‘0’s
and ‘1’s, i.e., toggling between 0 and 1. When the internal
Program or Erase operation is completed, the toggling will
stop. The device is then ready for the next operation. The
Toggle Bit is valid after the rising edge of fourth WE# (or
CE#) pulse for Program operation. For Sector- or Chip-
Erase, the Toggle Bit is valid after the rising edge of sixth
WE# (or CE#) pulse. See Figure 10 for Toggle Bit timing
diagram and Figure 18 for a flowchart.
Data
BFH
Data Protection
The SST39LF512/010/020/040 and SST39VF512/010/
020/040 provide both hardware and software features to
protect nonvolatile data from inadvertent writes.
0000H
Hardware Data Protection
Noise/Glitch Protection: A WE# or CE# pulse of less than 5
ns will not initiate a Write cycle.
V
DD
Power Up/Down Detection: The Write operation is
inhibited when V
DD
is less than 1.5V.
Write Inhibit Mode: Forcing OE# low, CE# high, or WE#
high will inhibit the Write operation. This prevents inadvert-
ent writes during power-up or power-down.
Product Identification Mode Exit/Reset
In order to return to the standard Read mode, the Software
Product Identification mode must be exited. Exit is accom-
plished by issuing the Software ID Exit command
sequence, which returns the device to the Read operation.
Please note that the Software ID Exit command is ignored
during an internal Program or Erase operation. See Table 4
for software command codes, Figure 14 for timing wave-
form, and Figure 19 for a flowchart.
©2010 Silicon Storage Technology, Inc.
S71150-14-000
01/10
3
512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit Multi-Purpose Flash
SST39LF512 / SST39LF010 / SST39LF020 / SST39LF040
SST39VF512 / SST39VF010 / SST39VF020 / SST39VF040
Data Sheet
X-Decoder
SuperFlash
Memory
Memory Address
Address Buffers & Latches
Y-Decoder
CE#
OE#
WE#
Control Logic
I/O Buffers and Data Latches
DQ
7
- DQ
0
1150 B1.1
FIGURE 1: Functional Block Diagram
SST39LF/VF512 SST39LF/VF010 SST39LF/VF020 SST39LF/VF040
WE#
WE#
WE#
WE#
VDD
A12
A15
A16
A18
VDD
A12
A15
A16
VDD
A12
A15
A16
NC
VDD
A12
A15
NC
NC
SST39LF/VF040 SST39LF/VF020 SST39LF/VF010 SST39LF/VF512
NC
SST39LF/VF512 SST39LF/VF010 SST39LF/VF020 SST39LF/VF040
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
5
6
7
8
9
10
11
12
13
SST39LF/VF040 SST39LF/VF020 SST39LF/VF010 SST39LF/VF512
4
3
2
1
32 31 30
29
28
27
26
25
24
23
22
NC
A17
NC
A17
A14
A13
A8
A9
A11
OE#
A10
CE#
DQ7
A14
A13
A8
A9
A11
OE#
A10
CE#
DQ7
A14
A13
A8
A9
A11
OE#
A10
CE#
DQ7
A14
A13
A8
A9
A11
OE#
A10
CE#
DQ7
32-lead PLCC
Top View
21
14 15 16 17 18 19 20
DQ1
DQ2
VSS
DQ3
DQ4
DQ5
DQ6
1150 32-plcc NH P4.3
DQ1
DQ2
VSS
DQ3
DQ4
DQ5
DQ5
DQ5
DQ1
DQ2
VSS
DQ3
DQ4
DQ1
DQ2
VSS
DQ3
DQ4
FIGURE 2: Pin Assignments for 32-lead PLCC
©2010 Silicon Storage Technology, Inc.
S71150-14-000
01/10
4
DQ6
DQ6
DQ6
512 Kbit / 1 Mbit / 2 Mbit / 4 Mbit Multi-Purpose Flash
SST39LF512 / SST39LF010 / SST39LF020 / SST39LF040
SST39VF512 / SST39VF010 / SST39VF020 / SST39VF040
Data Sheet
SST39LF/VF040 SST39LF/VF020 SST39LF/VF010 SST39LF/VF512
A11
A9
A8
A13
A14
A17
WE#
VDD
A18
A16
A15
A12
A7
A6
A5
A4
A11
A9
A8
A13
A14
A17
WE#
VDD
NC
A16
A15
A12
A7
A6
A5
A4
A11
A9
A8
A13
A14
NC
WE#
VDD
NC
A16
A15
A12
A7
A6
A5
A4
A11
A9
A8
A13
A14
NC
WE#
VDD
NC
NC
A15
A12
A7
A6
A5
A4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
1150 32-tsop WH P1.0
SST39LF/VF512 SST39LF/VF010 SST39LF/VF020 SST39LF/VF040
OE#
A10
CE#
DQ7
DQ6
DQ5
DQ4
DQ3
VSS
DQ2
DQ1
DQ0
A0
A1
A2
A3
OE#
A10
CE#
DQ7
DQ6
DQ5
DQ4
DQ3
VSS
DQ2
DQ1
DQ0
A0
A1
A2
A3
OE#
A10
CE#
DQ7
DQ6
DQ5
DQ4
DQ3
VSS
DQ2
DQ1
DQ0
A0
A1
A2
A3
OE#
A10
CE#
DQ7
DQ6
DQ5
DQ4
DQ3
VSS
DQ2
DQ1
DQ0
A0
A1
A2
A3
Standard Pinout
Top View
Die Up
FIGURE 3: Pin Assignments for 32-lead TSOP (8mm x 14mm)
TOP VIEW (balls facing down)
SST39LF/VF010
6
5
1150 48-tfbga B3K P2.0
A9 A8 A11 A12 NC A10 DQ6 DQ7
4
3
2
1
WE# NC NC NC DQ5 NC VDD DQ4
NC NC NC NC DQ2 DQ3 VDD NC
A7 NC A6
A3 A4 A2
A5 DQ0 NC
A1
NC DQ1
6
5
4
3
2
1
TOP VIEW (balls facing down)
SST39LF/VF020
A14 A13 A15 A16 NC NC
NC VSS
A14 A13 A15 A16 A17 NC
NC VSS
1150 48-tfbga B3K P3.0
A9 A8 A11 A12 NC A10 DQ6 DQ7
WE# NC NC NC DQ5 NC VDD DQ4
NC NC NC NC DQ2 DQ3 VDD NC
A7 NC A6
A3 A4 A2
A5 DQ0 NC
A1
NC DQ1
A0 CE# OE# VSS
A0 CE# OE# VSS
A
B
C
D
E
F
G
H
A
TOP VIEW (balls facing down)
SST39LF/VF040
B
C
D
E
F
G
H
6
5
4
3
2
1
A14 A13 A15 A16 A17 NC
NC VSS
1150 48-tfbga B3K P4.0
A9 A8 A11 A12 NC A10 DQ6 DQ7
WE# NC NC NC DQ5 NC VDD DQ4
NC NC NC NC DQ2 DQ3 VDD NC
A7 A18 A6
A3 A4 A2
A5 DQ0 NC
A1
NC DQ1
A0 CE# OE# VSS
A
B
C
D
E
F
G
H
FIGURE 4: Pin Assignment for 48-ball TFBGA (6mm x 8mm) for 1 Mbit, 2 Mbit, and 4 Mbit
©2010 Silicon Storage Technology, Inc.
S71150-14-000
01/10
5
查看更多>
热门器件
热门资源推荐
器件捷径:
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV AW AX AY AZ B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF BG BH BI BJ BK BL BM BN BO BP BQ BR BS BT BU BV BW BX BY BZ C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF CG CH CI CJ CK CL CM CN CO CP CQ CR CS CT CU CV CW CX CY CZ D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF DG DH DI DJ DK DL DM DN DO DP DQ DR DS DT DU DV DW DX DZ
需要登录后才可以下载。
登录取消