STPS30SM60C
Power Schottky rectifier
Features
■
■
■
■
A1
K
A2
High current capability
Avalanche rated
Low forward voltage drop
High frequency operation
K
K
A2
A2
A1
K
Description
The STPS30SM60C is a dual diode Schottky
rectifier, suited for high frequency switch mode
power supply.
Packaged in TO-220AB, I PAK and D PAK, this
device is intended to be used in notebook, game
station and desktop adapters, providing in these
applications a good efficiency at both low and
high load.
Table 1.
Device summary
Symbol
I
F(AV)
V
RRM
V
F
(typ)
T
j
(max)
Value
2 x 15 A
60 V
0.405 V
150 °C
2
2
A1
D
2
PAK
STPS30SM60CG-TR
I
2
PAK
STPS30SM60CR
K
A2
A1
K
TO-220AB
STPS30SM60CT
Figure 1.
V
I
Electrical characteristics
(a)
I
"Forward"
2 x I
O
I
F
X
V
RRM
V
R
V
AR
I
O
X
V
I
R
VTo V
F(Io)
V
F
V
F(2xIo)
"Reverse"
I
AR
a. V
ARM
and I
ARM
must respect the reverse safe
operating area defined in
Figure 12.
V
AR
and I
AR
are
pulse measurements (t
p
< 1 µs). V
R
, I
R
, V
RRM
and V
F
,
are static characteristics
November 2011
Doc ID 022023 Rev 1
1/10
www.st.com
10
Characteristics
STPS30SM60C
1
Characteristics
Table 2.
Symbol
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
Absolute ratings (limiting values, per diode, at T
amb
= 25 °C unless
otherwise specified)
Parameter
Repetitive peak reverse voltage
Forward rms current
Average forward current,
δ
= 0.5
Surge non repetitive forward current
T
c
= 130 °C Per diode
T
c
= 130 °C Per device
t
p
= 10 ms sine-wave
T
j
= 25 °C, t
p
= 1 µs
Value
60
40
15
A
30
300
14400
80
80
-65 to +175
150
A
W
V
V
°C
°C
Unit
V
A
P
ARM(1)
Repetitive peak avalanche power
V
ARM(2)
V
ARM(2)
T
stg
T
j
Maximum repetitive peak
avalanche voltage
Maximum single-pulse
peak avalanche voltage
Storage temperature range
Maximum operating junction temperature
(3)
t
p
< 1 µs, T
j
< 150 °C, I
AR
< 54 A
t
p
< 1 µs, T
j
< 150 °C, I
AR
< 54 A
1. For temperature or pulse time duration deratings, please refer to
Figure 4
and
5.
More details regarding the
avalanche energy measurements and diode validation in the avalanche are provided in the application
notes AN1768 and AN2025.
2. See
Figure 12
3.
1
dPtot <
condition to avoid thermal runaway for a diode on its own heatsink
Rth(j-a)
dTj
Table 3.
Symbol
R
th(j-c)
R
th(c)
Thermal parameters
Parameter
Junction to case
Coupling
per diode
total
Value
1.5
0.85
0.2
Unit
°C/W
°C/W
When the two diodes 1 and 2 are used simultaneously:
ΔT
j
(diode 1) = P(diode 1) x R
th(j-c)
(Per diode) + P(diode 2) x R
th(c)
2/10
Doc ID 022023 Rev 1
STPS30SM60C
Table 4.
Symbol
I
R(1)
Characteristics
Static electrical characteristics (per diode)
Parameter
Reverse leakage current
Test conditions
T
j
= 25 °C
T
j
= 125 °C
T
j
= 25 °C
T
j
= 125 °C
T
j
= 25 °C
T
j
= 125 °C
V
R
= V
RRM
I
F
= 7.5 A
I
F
= 15 A
Min.
-
-
-
-
-
-
Typ.
15
10
0.495
0.405
0.565
0.505
Max.
65
40
0.535
0.455
0.625
0.570
V
Unit
µA
mA
V
F(2)
Forward voltage drop
1. Pulse test: t
p
= 5 ms,
δ
< 2%
2. Pulse test: t
p
= 380 µs,
δ
< 2%
To evaluate the conduction losses use the following equation:
P = 0.415 x I
F(AV)
+ 0.0103 x I
F
2
(RMS)
Figure 2.
Average forward power dissipation Figure 3.
versus average forward current
(per diode)
18
δ
= 0.05
δ
= 0.1
δ
= 0.2
δ
= 0.5
Average forward current versus
ambient temperature
(δ = 0.5, per diode)
16
14
12
10
8
P
F(AV)
(W)
δ
=1
I
F(AV)
(A)
Rth(j-a) = Rth(j-c)
16
14
12
10
8
6
4
2
δ
= t
p
/ T
T
6
4
2
0
0
2
4
6
8
10
12
t
p
14
16
18
I
F(AV)
(A)
20
22
0
0
25
50
T
amb
(°C)
75
100
125
150
Figure 4.
Normalized avalanche power
derating versus pulse duration
Figure 5.
Normalized avalanche power
derating versus junction
temperature
1
P
ARM
(tp)
P
ARM
(1µs)
1.2
1
P
ARM
(T
j
)
P
ARM
(25 °C)
0.1
0.8
0.6
0.01
0.4
0.2
0.001
0.01
t
p
(µs)
0.1
1
10
100
1000
0
25
T
j
(°C)
50
75
100
125
150
Doc ID 022023 Rev 1
3/10
Characteristics
STPS30SM60C
Figure 6.
Non repetitive surge peak forward
current versus overload duration
(maximum values, per diode)
Figure 7.
Relative thermal impedance
junction to case versus pulse
duration
220
200
180
160
140
120
100
80
60
40
20
I
M
(A)
1.0
0.9
0.8
0.7
T
c
= 25 °C
T
c
= 75 °C
T
c
= 125 °C
t
δ
= 0.5
1.E-02
1.E-01
0.6
0.5
0.4
0.3
Z
th(j-c)
/R
th(j-c)
I
M
0.2
0.1
Single pulse
0
1.E-03
t(s)
1.E+00
0.0
1.E-04
t
p
(s)
1.E-03
1.E-02
1.E-01
1.E+00
Figure 8.
Reverse leakage current versus
reverse voltage applied
(typical values, per diode)
Figure 9.
Junction capacitance versus
reverse voltage applied
(typical values, per diode)
F = 1 MHz
V
osc
= 30 mV
RMS
T
j
= 25 °C
1.E+02
I
R
(mA)
T
j
= 150 °C
10000
C(pF)
1.E+01
T
j
= 125 °C
1.E+00
T
j
= 100 °C
T
j
= 75 °C
1.E-01
T
j
= 50 °C
1.E-02
T
j
= 25 °C
1000
1.E-03
0
10
20
30
40
50
V
R
(V)
60
100
1
10
V
R
(V)
100
Figure 10. Forward voltage drop versus
forward current (per diode)
1000.0
Figure 11. Thermal resistance junction to
ambient versus copper surface
under tab
80
70
I
FM
(A)
R
th(j-a)
(°C/W)
epoxy printed board copper thickness = 35 µm
100.0
T
j
= 125 °C
(Maximum values)
T
j
= 125 °C
(Typical values)
T
j
= 25 °C
(Maximum values)
60
50
40
30
20
10
D PAK
2
10.0
1.0
0.1
0.0
V
FM
(V)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0
0
5
10
15
20
25
30
S
Cu
(cm )
35
40
2
4/10
Doc ID 022023 Rev 1
STPS30SM60C
Figure 12. Reverse safe operating area (t
p
< 1 µs and T
j
< 150 °C)
60.0
55.0
50.0
45.0
40.0
35.0
30.0
80
85
90
95
100
105
110
Characteristics
I
arm
(A)
I
arm
(V
arm
) 150 °C, 1µs
V
arm
(V)
115
120
Doc ID 022023 Rev 1
5/10