首页 > 器件类别 > 电源/电源管理 > 电源电路

TC1055-3.6VCT713

低压差稳压器 .1mA w/Shtdn & Error 3.6V

器件类别:电源/电源管理    电源电路   

厂商名称:Microchip(微芯科技)

厂商官网:https://www.microchip.com

器件标准:

下载文档
器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
零件包装代码
SOT-23A
包装说明
LSSOP, TSOP5/6,.11,37
针数
5
Reach Compliance Code
compliant
ECCN代码
EAR99
Factory Lead Time
23 weeks
Is Samacsys
N
可调性
FIXED
最大回动电压 1
0.25 V
标称回动电压 1
0.25 V
最大绝对输入电压
6.5 V
最大输入电压
6 V
最小输入电压
2.7 V
JESD-30 代码
R-PDSO-G5
JESD-609代码
e3
长度
2.9 mm
最大电网调整率
0.0126%
最大负载调整率
0.072%
湿度敏感等级
1
功能数量
1
输出次数
1
端子数量
5
工作温度TJ-Max
125 °C
工作温度TJ-Min
-40 °C
最大输出电流 1
0.1 A
最大输出电压 1
3.69 V
最小输出电压 1
3.51 V
标称输出电压 1
3.6 V
封装主体材料
PLASTIC/EPOXY
封装代码
LSSOP
封装等效代码
TSOP5/6,.11,37
封装形状
RECTANGULAR
封装形式
SMALL OUTLINE, LOW PROFILE, SHRINK PITCH
包装方法
TAPE AND REEL
峰值回流温度(摄氏度)
260
认证状态
Not Qualified
调节器类型
FIXED POSITIVE SINGLE OUTPUT LDO REGULATOR
座面最大高度
1.45 mm
表面贴装
YES
技术
CMOS
端子面层
Matte Tin (Sn)
端子形式
GULL WING
端子节距
0.95 mm
端子位置
DUAL
处于峰值回流温度下的最长时间
40
最大电压容差
2.5%
宽度
1.65 mm
Base Number Matches
1
文档预览
M
Features
TC1054/TC1055/TC1186
Package Type
5-Pin SOT-23A
V
OUT
5
TC1054
TC1055
TC1186
1
V
IN
2
GND
3
SHDN
ERROR
4
50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown
and ERROR Output
• Low Ground Current for Longer Battery Life
• Low Dropout Voltage
• Choice of 50 mA (TC1054), 100 mA (TC1055)
and 150 mA (TC1186) Output
• High Output Voltage Accuracy
• Standard or Custom Output Voltages
• Power-Saving Shutdown Mode
• ERROR Output Can Be Used as a Low Battery
Detector or Microcontroller Reset Generator
• Over-Current and Over-Temperature Protection
• 5-Pin SOT-23A Package
• Pin Compatible Upgrades for Bipolar Regulators
NOTE:
5-Pin SOT-23A is equivalent to the EIAJ (SC-74A)
Applications
Battery Operated Systems
Portable Computers
Medical Instruments
Instrumentation
Cellular/GSM/PHS Phones
Linear Post-Regulators for SMPS
Pagers
General Description
The TC1054, TC1055 and TC1186 are high accuracy
(typically ±0.5%) CMOS upgrades for older (bipolar)
low dropout regulators. Designed specifically for
battery-operated systems, the devices’ CMOS
construction minimizes ground current, extending bat-
tery life. Total supply current is typically 50 µA at full
load (20 to 60 times lower than in bipolar regulators).
The devices’ key features include low noise operation,
low dropout voltage – typically 85 mV (TC1054),
180 mV (TC1055) and 270 mV (TC1186) at full load —
and fast response to step changes in load. An error out-
put (ERROR) is asserted when the devices are out-of-
regulation (due to a low input voltage or excessive out-
put current). ERROR can be used as a low battery
warning or as a processor RESET signal (with the addi-
tion of an external RC network). Supply current is
reduced to 0.5 µA (max), with both V
OUT
and ERROR
disabled when the shutdown input is low. The devices
incorporate both over-temperature and over-current
protection.
The TC1054, TC1055 and TC1186 are stable with an
output capacitor of only 1 µF and have a maximum
output current of 50 mA, 100 mA and 150 mA,
respectively. For higher output current regulators,
please refer to the TC1173 (I
OUT
= 300 mA) data sheet
(DS21632).
Typical Application
1
5
+
1 µF
V
IN
V
IN
V
OUT
V
OUT
2
GND
TC1054
TC1055
TC1186
1 MΩ
3
SHDN
ERROR
4
ERROR
Shutdown Control
(from Power Control Logic)
2003 Microchip Technology Inc.
DS21350C-page 1
TC1054/TC1055/TC1186
1.0
ELECTRICAL
CHARACTERISTICS
† Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. These
are stress ratings only and functional operation of the device
at these or any other conditions above those indicated in the
operation sections of the specifications is not implied.
Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability.
Absolute Maximum Ratings †
Input Voltage ....................................................................6.5V
Output Voltage ..................................... (-0.3V) to (V
IN
+ 0.3V)
Power Dissipation ......................... Internally Limited
(Note 6)
Maximum Voltage on Any Pin ...................V
IN
+0.3V to -0.3V
Operating Junction Temperature Range .. -40°C < T
J
< 125°C
Storage Temperature ....................................-65°C to +150°C
DC CHARACTERISTICS
Electrical Specifications:
Unless otherwise noted, V
IN
= V
OUT
+ 1V, I
L
= 100 µA, C
L
= 3.3 µF, SHDN > V
IH
, T
A
= +25°C.
Boldface
type specifications apply for junction temperatures of -40°C to +125°C.
Parameters
Input Operating Voltage
Maximum Output Current
Sym
V
IN
I
OUT
MAX
Min
2.7
50
100
150
Typ
20
40
0.05
0.5
0.5
2
65
85
180
270
50
0.05
64
300
0.04
160
10
Max
6.0
0.35
2
3
120
250
400
80
0.5
450
Units
V
mA
Note 8
TC1054
TC1055
TC1186
Note 1
Conditions
Output Voltage
V
OUT
Temperature Coefficient
Line Regulation
Load Regulation:
TC1054; TC1055
TC1186
Dropout Voltage:
V
OUT
TCV
OUT
∆V
OUT
/∆V
IN
∆V
OUT
/V
OUT
V
R
– 2.5%
V
R
±0.5%
V
R
+ 2.5%
V
ppm/°C
Note 2
%
%
mV
(V
R
+ 1V)
V
IN
6V
(Note 3)
I
L
= 0.1 mA to I
OUT
MAX
I
L
= 0.1 mA to I
OUT
MAX
I
L
= 100 µA
I
L
= 20 mA
I
L
= 50 mA
I
L
= 100 mA
I
L
= 150 mA
(Note 4)
SHDN = V
IH
, I
L
= 0 µA
(Note 9)
SHDN = 0V
f
1 kHz
V
OUT
= 0V
Notes 5, 6
V
IN
-V
OUT
TC1055; TC1186
TC1186
Supply Current
Shutdown Supply Current
Power Supply Rejection Ratio
Output Short Circuit Current
Thermal Regulation
Thermal Shutdown Die
Temperature
Thermal Shutdown Hysteresis
I
IN
I
INSD
PSRR
I
OUT
SC
∆V
OUT
/∆P
D
T
SD
∆T
SD
µA
µA
dB
mA
V/W
°C
°C
Note 1:
V
R
is the regulator output voltage setting. For example: V
R
= 1.8V, 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.
2:
TC V
OUT
= (V
OUT
MAX
– V
OUT
MIN
)x 10
6
V
OUT
x
∆T
3:
Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating
effects are covered by the thermal regulation specification.
4:
Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal
value.
5:
Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,
excluding load or line regulation effects. Specifications are for a current pulse equal to I
L
MAX
at V
IN
= 6V for T = 10 msec.
6:
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-
perature and the thermal resistance from junction-to-air (i.e., T
A
, T
J
,
θ
JA
). Exceeding the maximum allowable power dis-
sipation causes the device to initiate thermal shutdown. Please see Section 5.0, “Thermal Considerations”, for more
details.
7:
Hysteresis voltage is referenced by V
R
.
8:
The minimum V
IN
has to justify the conditions: V
IN
V
R
+ V
DROPOUT
and V
IN
2.7V for I
L
= 0.1 mA to I
OUT
MAX
.
9:
Apply for junction temperatures of -40C to +85C.
DS21350C-page 2
2003 Microchip Technology Inc.
TC1054/TC1055/TC1186
DC CHARACTERISTICS (CONTINUED)
Electrical Specifications:
Unless otherwise noted, V
IN
= V
OUT
+ 1V, I
L
= 100 µA, C
L
= 3.3 µF, SHDN > V
IH
, T
A
= +25°C.
Boldface
type specifications apply for junction temperatures of -40°C to +125°C.
Parameters
Output Noise
SHDN Input
SHDN Input High Threshold
SHDN Input Low Threshold
ERROR Output
Minimum V
IN
Operating Voltage
Output Logic Low Voltage
ERROR Threshold Voltage
ERROR Positive Hysteresis
V
IN
MIN
V
OL
V
TH
V
HYS
1.0
0.95 x V
R
50
400
V
mV
V
mV
1 mA Flows to ERROR
See
Figure 4-2
Note 7
V
IH
V
IL
45
15
%V
IN
%V
IN
V
IN
= 2.5V to 6.5V
V
IN
= 2.5V to 6.5V
Sym
eN
Min
Typ
260
Max
Units
Conditions
nV/√Hz I
L
= I
OUT
MAX
Note 1:
V
R
is the regulator output voltage setting. For example: V
R
= 1.8V, 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.
2:
TC V
OUT
= (V
OUT
MAX
– V
OUT
MIN
)x 10
6
V
OUT
x
∆T
3:
Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating
effects are covered by the thermal regulation specification.
4:
Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal
value.
5:
Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,
excluding load or line regulation effects. Specifications are for a current pulse equal to I
L
MAX
at V
IN
= 6V for T = 10 msec.
6:
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-
perature and the thermal resistance from junction-to-air (i.e., T
A
, T
J
,
θ
JA
). Exceeding the maximum allowable power dis-
sipation causes the device to initiate thermal shutdown. Please see Section 5.0, “Thermal Considerations”, for more
details.
7:
Hysteresis voltage is referenced by V
R
.
8:
The minimum V
IN
has to justify the conditions: V
IN
V
R
+ V
DROPOUT
and V
IN
2.7V for I
L
= 0.1 mA to I
OUT
MAX
.
9:
Apply for junction temperatures of -40C to +85C.
2003 Microchip Technology Inc.
DS21350C-page 3
TC1054/TC1055/TC1186
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note:
Unless otherwise indicated,
V
IN
= V
OUT
+ 1V, I
L
= 100 µA, C
L
= 3.3 µF, SHDN > V
IH
, T
A
= +25°C.
0.020
0.018
0.100
I
LOAD
= 10 mA
DROPOUT VOLTAGE (V)
0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.020
0.010
0.000
0
20
50
TEMPERATURE (°C)
70
125
I
LOAD
= 50 mA
DROPOUT VOLTAGE (V)
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000
-40
-20
C
IN
= 1
µF
C
OUT
= 1
µF
C
IN
= 1
µF
C
OUT
= 1
µF
-40
-20
0
20
50
TEMPERATURE (°C)
70
125
FIGURE 2-1:
Dropout Voltage vs.
Temperature (I
LOAD
= 10 mA).
0.200
0.180
DROPOUT VOLTAGE (V)
FIGURE 2-4:
Dropout Voltage vs.
Temperature (I
LOAD
= 50 mA).
0.300
I
LOAD
= 100 mA
I
LOAD
= 150 mA
DROPOUT VOLTAGE (V)
0.250
0.200
0.150
0.100
0.050
0.000
0.160
0.140
0.120
0.100
0.080
0.060
0.040
0.020
0.000
-40
-20
0
20
50
70
125
C
IN
= 1
µF
C
OUT
= 1
µF
C
IN
= 1
µF
C
OUT
= 1
µF
-40
-20
0
20
50
TEMPERATURE (°C)
70
125
TEMPERATURE (°C)
FIGURE 2-2:
Dropout Voltage vs.
Temperature (I
LOAD
= 100 mA).
90
80
FIGURE 2-5:
Dropout Voltage vs.
Temperature (I
LOAD
= 150 mA).
90
I
LOAD
= 10 mA
GND CURRENT (
µ
A)
80
70
60
50
40
30
20
10
0
I
LOAD
= 100 mA
GND CURRENT (
µ
A)
70
60
50
40
30
20
10
0
C
IN
= 1
µF
C
OUT
= 1
µF
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
V
IN
(V)
C
IN
= 1
µF
C
OUT
= 1
µF
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
V
IN
(V)
FIGURE 2-3:
(I
LOAD
= 10 mA).
Ground Current vs. V
IN
FIGURE 2-6:
(I
LOAD
= 100 mA).
Ground Current vs. V
IN
DS21350C-page 4
2003 Microchip Technology Inc.
TC1054/TC1055/TC1186
Note:
Unless otherwise indicated,
V
IN
= V
OUT
+ 1V, I
L
= 100 µA, C
L
= 3.3 µF, SHDN > V
IH
, T
A
= +25°C.
80
70
GND CURRENT (µA)
3.5
I
LOAD
= 150 mA
I
LOAD
= 0
3
2.5
60
V
OUT
(V)
50
40
30
20
10
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
V
IN
(V)
2
1.5
1
C
IN
= 1
µF
C
OUT
= 1
µF
0.5
0
0
0.5 1 1.5
2 2.5 3 3.5
4 4.5 5
C
IN
= 1
µF
C
OUT
= 1
µF
5.5 6 6.5 7
V
IN
(V)
FIGURE 2-7:
(I
LOAD
= 150 mA).
3.5
3.0
2.5
V
OUT
(V)
Ground Current vs. V
IN
FIGURE 2-10:
(I
LOAD
= 0 mA).
V
OUT
vs. V
IN
I
LOAD
= 100 mA
3.320
3.315
3.310
3.305
I
LOAD
= 10 mA
2.0
V
OUT
(V)
1.5
1.0
0.5
0.0
0
3.300
3.295
3.290
C
IN
= 1
µF
C
OUT
= 1
µF
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
V
IN
(V)
3.285
3.280
3.275
-40
C
IN
= 1
µF
C
OUT
= 1
µF
V
IN
= 4.3V
-20
-10
0
20
40
85
125
FIGURE 2-8:
(I
LOAD
= 100 mA).
3.290
3.288
3.286
V
OUT
vs. V
IN
TEMPERATURE (°C)
FIGURE 2-11:
Output Voltage (3.3V) vs.
Temperature (I
LOAD
= 10 mA).
5.025
5.020
5.015
I
LOAD
= 150 mA
I
LOAD
= 10 mA
V
OUT
(V)
3.284
V
OUT
(V)
C
IN
= 1
µF
C
OUT
= 1
µF
V
IN
= 4.3V
-40
-20
-10
0
20
40
85
125
3.282
3.280
3.278
3.276
3.274
5.010
5.005
5.000
4.995
4.990
4.985
V
IN
= 6V
C
IN
= 1
µF
C
OUT
= 1
µF
-40
-20
-10
0
20
40
85
125
TEMPERATURE (°C)
TEMPERATURE (°C)
FIGURE 2-9:
(I
LOAD
= 150 mA).
V
OUT
vs. V
IN
FIGURE 2-12:
Output Voltage (5V) vs.
Temperature (I
LOAD
= 10 mA).
2003 Microchip Technology Inc.
DS21350C-page 5
查看更多>
《智能驾驶之激光雷达算法详解》6、基于 3D 激光点云的聚类分割
本章深入探索3D激光点云的聚类算法,作为机器学习中的核心任务之一,聚类旨在依据特定规则将数...
戈壁滩上的辉煌 汽车电子
AM335X烧写uboot出现的问题
AM335X使用securecrt超级终端烧写uboot,在使用kermit传输MLO文件的时候,...
ZHONGWei DSP 与 ARM 处理器
XDS100V2驱动的下载
有很多人使用XDS100V2来做C2000的开发,但是有些电脑安装CCSv5后居然找不到这个工具的驱...
hansonhe 微控制器 MCU
抗干扰复位电路
此图是单片机抗干扰电路 请问它都抗了哪些方面的干扰,原理是什么 抗干扰复位电路 用了个反向器 按...
fjz0000 嵌入式系统
P1REN会影响到P1OUT吗?请有EZ430-F2013的朋友帮我做个实验,非常简单
从TI提供的P1口的图纸上看,P1OUT.0的输出不受P1REN.0的影响,可是如果做个实验,发现完...
zhangwf 微控制器 MCU
【DigiKey创意大赛】便携生命探测仪07+作品提交
便携生命探测仪 作者:sipower 一、 作品简介 现在越来越多业余驴友喜欢户外冒险,但是...
sipower DigiKey得捷技术专区
热门器件
热门资源推荐
器件捷径:
L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 LA LB LC LD LE LF LG LH LI LJ LK LL LM LN LO LP LQ LR LS LT LU LV LW LX LY LZ M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 MA MB MC MD ME MF MG MH MI MJ MK ML MM MN MO MP MQ MR MS MT MU MV MW MX MY MZ N0 N1 N2 N3 N4 N5 N6 N7 N8 NA NB NC ND NE NF NG NH NI NJ NK NL NM NN NO NP NQ NR NS NT NU NV NX NZ O0 O1 O2 O3 OA OB OC OD OE OF OG OH OI OJ OK OL OM ON OP OQ OR OS OT OV OX OY OZ P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 PA PB PC PD PE PF PG PH PI PJ PK PL PM PN PO PP PQ PR PS PT PU PV PW PX PY PZ Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 QA QB QC QE QF QG QH QK QL QM QP QR QS QT QV QW QX QY R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 RA RB RC RD RE RF RG RH RI RJ RK RL RM RN RO RP RQ RR RS RT RU RV RW RX RY RZ
需要登录后才可以下载。
登录取消