D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
DBV 5
DBV 6
YEQ, YZQ
TPS793xx
SLVS348K – JULY 2001 – REVISED OCTOBER 2007
www.ti.com
ULTRALOW-NOISE, HIGH PSRR, FAST RF 200mA LOW-DROPOUT LINEAR
REGULATORS IN NanoStar™ WAFER CHIP SCALE AND SOT23
1
FEATURES
DESCRIPTION
The TPS793xx family of low-dropout (LDO)
low-power linear voltage regulators features high
power-supply rejection ratio (PSRR), ultralow-noise,
fast start-up, and excellent line and load transient
responses in NanoStar wafer chip scale and SOT23
packages. NanoStar packaging gives an ultrasmall
footprint as well as an ultralow profile and package
weight, making it ideal for portable applications such
as handsets and PDAs. Each device in the family is
stable, with a small 2.2μF ceramic capacitor on the
output. The TPS793xx family uses an advanced,
proprietary BiCMOS fabrication process to yield
extremely low dropout voltages (for example, 112mV
at 200mA, TPS79330). Each device achieves fast
start-up times (approximately 50μs with a 0.001μF
bypass capacitor) while consuming very low
quiescent current (170μA typical). Moreover, when
the device is placed in standby mode, the supply
current is reduced to less than 1μA. The TPS79328
exhibits approximately 32μV
RMS
of output voltage
noise at 2.8V output with a 0.1μF bypass capacitor.
Applications with analog components that are
noise-sensitive, such as portable RF electronics,
benefit from the high PSRR and low-noise features
as well as the fast response time.
TPS79328
•
200mA RF Low-Dropout Regulator
With Enable
•
Available in Fixed Voltage Versions from 1.8V
to 4.75V and Adjustable (1.22V to 5.5V)
•
High PSRR (70dB at 10kHz)
•
Ultralow-Noise (32μV
RMS
, TPS79328)
•
Fast Start-Up Time (50μs)
•
Stable With a 2.2μF Ceramic Capacitor
•
Excellent Load/Line Transient Response
•
Very Low Dropout Voltage (112mV at 200mA,
TPS79330)
•
5- and 6-Pin SOT23 (DBV) and NanoStar Wafer
Chip Scale (YEQ, YZQ) Packages
234
APPLICATIONS
•
•
•
•
•
RF: VCOs, Receivers, ADCs
Audio
Cellular and Cordless Telephones
Bluetooth
®
, Wireless LAN
Handheld Organizers, PDAs
DBV PACKAGE
(TOP VIEW)
TPS79328
IN
GND
EN
1
2
3
4
NR
5
OUT
0.30
OUTPUT SPECTRAL NOISE DENSITY
vs
FREQUENCY
100
V
IN
= 3.8 V
C
OUT
= 2.2
µF
C
NR
= 0.1
µF
90
80
RIPPLE REJECTION
vs
FREQUENCY
I
OUT
= 200 mA
Fixed Option
DBV PACKAGE
(TOP VIEW)
IN
GND
EN
1
2
3
6
5
4
OUT
FB
NR
Output Spectral Noise Density (µV/√Hz)
0.25
0.20
Ripple Rejection (dB)
70
60
50
40
30
20
10
V
IN
= 3.8 V
C
OUT
= 10
µF
C
NR
= 0.01
µF
10
100
1k
10 k
100 k
1M
10 M
I
OUT
= 10 mA
0.15
I
OUT
= 1 mA
0.10
I
OUT
= 200 mA
0.05
Adjustable Option
YEQ, YZQ
PACKAGE
(TOP VIEW)
IN
C3
A3
C1
B2
A1
OUT
NR
GND
0
100
1k
10 k
Frequency (Hz)
100 k
0
Frequency (Hz)
EN
Figure 1.
1
2
3
4
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
NanoStar is a trademark of Texas Instruments.
Bluetooth is a registered trademark of Bluetooth SIG, Inc.
All other trademarks are the property of their respective owners.
Copyright © 2001–2007, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
TPS793xx
SLVS348K – JULY 2001 – REVISED OCTOBER 2007
www.ti.com
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
ORDERING INFORMATION
(1)
PRODUCT
TPS793xxyyyz
V
OUT (2)
XX
is nominal output voltage (for example, 28 = 2.8V, 285 = 2.85V, 01 = Adjustable).
YYY
is package designator.
Z
is package quantity.
(1)
(2)
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at
www.ti.com.
Output voltages from 1.2V to 4.8V in 50mV increments are available; minimum order quantities may apply. Contact factory for details
and availability.
ABSOLUTE MAXIMUM RATINGS
Over operating temperature range (unless otherwise noted)
(1)
UNIT
V
IN
range
V
EN
range
V
OUT
range
Peak output current
ESD rating, HBM
ESD rating, CDM
Continuous total power dissipation
Junction temperature range, DBV package
Junction temperature range, YEQ package
Storage temperature range, T
stg
(1)
–0.3V to 6V
–0.3V to 6V
–0.3V to 6V
Internally limited
2kV
500V
See Dissipation Ratings Table
–40°C to +150°C
–40°C to +125°C
–65°C to +150°C
Stresses beyond those listed under
absolute maximum ratings
may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under
recommended operating
conditions
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
DISSIPATION RATINGS TABLE
BOARD
Low-K
(1)
High-K
Low-K
(2)
(1)
PACKAGE
DBV
DBV
YEQ
YEQ
R
θJC
65°C/W
65°C/W
27°C/W
27°C/W
R
θJA
255°C/W
180°C/W
255°C/W
190°C/W
DERATING FACTOR
ABOVE T
A
= +25°C
3.9mW/°C
5.6mW/°C
3.9mW/°C
5.3mW/°C
T
A
≤
+25°C
POWER
RATING
390mW
560mW
390mW
530mW
T
A
= +70°C
POWER
RATING
215mW
310mW
215mW
296mW
T
A
= +85°C
POWER
RATING
155mW
225mW
155mW
216mW
High-K
(2)
(1)
(2)
The JEDEC low-K (1s) board design used to derive this data was a 3-inch x 3-inch, two layer board with 2 ounce copper traces on top
of the board.
The JEDEC high-K (2s2p) board design used to derive this data was a 3-inch x 3-inch, multilayer board with 1 ounce internal power and
ground planes and 2 ounce copper traces on top and bottom of the board.
2
Submit Documentation Feedback
Copyright © 2001–2007, Texas Instruments Incorporated
TPS793xx
www.ti.com
SLVS348K – JULY 2001 – REVISED OCTOBER 2007
ELECTRICAL CHARACTERISTICS
Over recommended operating temperature range T
J
= –40°C to +125°C, V
EN
= V
IN
, V
IN
= V
OUT(nom)
+ 1V
(1)
, I
OUT
= 1mA,
C
OUT
= 10μF, C
NR
= 0.01μF (unless otherwise noted). Typical values are at +25°C.
PARAMETER
V
IN
Input voltage
(1)
TEST CONDITIONS
MIN
2.7
0
1.201
V
FB
TYP
MAX
5.5
200
UNIT
V
mA
V
V
V
V
V
V
V
V
V
%/V
mV
I
OUT
Continuous output current
V
FB
Internal reference (TPS79301)
Output voltage range (TPS79301)
TPS79318
TPS79325
TPS79328
Output voltage
TPS793285
TPS79330
TPS79333
TPS793475
Line regulation (ΔV
OUT
%/ΔV
IN
)
(1)
Load regulation (ΔV
OUT
%/ΔI
OUT
)
TPS79328
Dropout voltage
(2)
(V
IN
= V
OUT(nom)
– 0.1V)
TPS793285
TPS79330
TPS79333
TPS793475
Output current limit
GND pin current
Shutdown current
(3)
FB pin current
0μA < I
OUT
< 200mA,
0μA < I
OUT
< 200mA,
0μA < I
OUT
< 200mA,
0μA < I
OUT
< 200mA,
0μA < I
OUT
< 200mA,
0μA
≤
I
OUT
< 200mA,
0μA < I
OUT
< 200mA,
V
OUT
+ 1V < V
IN
≤
5.5V
0μA < I
OUT
< 200mA,
I
OUT
= 200mA
I
OUT
= 200mA
I
OUT
= 200mA
I
OUT
= 200mA
I
OUT
= 200mA
V
OUT
= 0V
0μA < I
OUT
< 200mA
V
EN
= 0V, 2.7V < V
IN
< 5.5V
V
FB
= 1.8V
f = 100Hz, T
J
= +25°C,
Power-supply ripple rejection
TPS79328
f = 100Hz, T
J
= +25°C,
f = 10kHz, T
J
= +25°C,
f = 100kHz, T
J
= +25°C,
BW = 200Hz to 100kHz,
I
OUT
= 200mA
I
OUT
= 10mA
I
OUT
= 200mA
I
OUT
= 200mA
I
OUT
= 200mA
C
NR
= 0.001μF
Output noise voltage (TPS79328)
C
NR
= 0.0047μF
C
NR
= 0.01μF
C
NR
= 0.1μF
C
NR
= 0.001μF
Time, start-up (TPS79328)
High level enable input voltage
Low level enable input voltage
EN pin current
UVLO threshold
UVLO hysteresis
(1)
(2)
(3)
R
L
= 14Ω, C
OUT
= 1μF
2.7V < V
IN
< 5.5V
2.7V < V
IN
< 5.5V
V
EN
= 0V
V
CC
rising
C
NR
= 0.0047μF
C
NR
= 0.01μF
T
J
= +25°C
2.8V < V
IN
< 5.5V
3.5V < V
IN
< 5.5V
3.8V < V
IN
< 5.5V
3.85V < V
IN
< 5.5V
4V < V
IN
< 5.5V
4.3V < V
IN
< 5.5V
5.25V < V
IN
< 5.5V
1.225
1.8
2.5
2.8
2.85
3
3.3
4.75
0.05
5
120
120
112
102
77
1.250
5.5 – V
DO
1.836
2.55
2.856
2.907
3.06
3.366
4.845
0.12
200
200
200
180
125
600
1.764
2.45
2.744
2.793
2.94
3.234
4.655
mV
285
170
0.07
70
68
70
43
55
36
33
32
50
70
100
1.7
0
–1
2.25
100
mA
μA
μA
μA
220
1
1
dB
μV
RMS
μs
V
IN
0.7
1
2.65
V
V
μA
V
mV
Minimum V
IN
is 2.7V or V
OUT
+ V
DO
, whichever is greater.
Dropout is not measured for the TPS79318 and TPS79325 since minimum V
IN
= 2.7V.
For adjustable versions, this parameter applies only after V
IN
is applied; then V
EN
transitions high to low.
Copyright © 2001–2007, Texas Instruments Incorporated
Submit Documentation Feedback
3
TPS793xx
SLVS348K – JULY 2001 – REVISED OCTOBER 2007
www.ti.com
FUNCTIONAL BLOCK DIAGRAMS
ADJUSTABLE VERSION
IN
UVLO
2.45V
Current
Sense
ILIM
_
59 k
OUT
GND
EN
UVLO
Thermal
Shutdown
Bandgap
Reference
1.22V
SHUTDOWN
+
FB
R1
R2
QuickStart
250 kΩ
V
ref
External to
the Device
NR
IN
FIXED VERSION
IN
UVLO
2.45V
GND
EN
UVLO
R2
Thermal
Shutdown
QuickStart
Bandgap
Reference
1.22V
250 kΩ
V
ref
Current
Sense
ILIM
_
SHUTDOWN
R1
+
OUT
R2 = 40 kΩ
IN
NR
Table 1. Terminal Functions
TERMINAL
NAME
NR
EN
FB
GND
IN
OUT
SOT23
ADJ
4
3
5
2
1
6
SOT23
FIXED
4
3
N/A
2
1
5
WCSP
FIXED
B2
A3
N/A
A1
C3
C1
DESCRIPTION
Connecting an external capacitor to this pin bypasses noise generated by the internal bandgap.
This improves power-supply rejection and reduces output noise.
Driving the enable pin (EN) high turns on the regulator. Driving this pin low puts the regulator into
shutdown mode. EN can be connected to IN if not used.
This terminal is the feedback input voltage for the adjustable device.
Regulator ground
Input to the device.
Output of the regulator.
4
Submit Documentation Feedback
Copyright © 2001–2007, Texas Instruments Incorporated