首页 > 器件类别 > 电源/电源管理 > 电源电路

U2402B-XFL

Power Supply Support Circuit, BIPolar, PDSO20, SO-20

器件类别:电源/电源管理    电源电路   

厂商名称:TEMIC

厂商官网:http://www.temic.de/

下载文档
器件参数
参数名称
属性值
厂商名称
TEMIC
包装说明
SO-20
Reach Compliance Code
unknown
模拟集成电路 - 其他类型
POWER SUPPLY SUPPORT CIRCUIT
JESD-30 代码
R-PDSO-G20
功能数量
1
端子数量
20
最高工作温度
85 °C
最低工作温度
-10 °C
封装主体材料
PLASTIC/EPOXY
封装形状
RECTANGULAR
封装形式
SMALL OUTLINE
认证状态
Not Qualified
表面贴装
YES
技术
BIPOLAR
温度等级
OTHER
端子形式
GULL WING
端子位置
DUAL
文档预览
U2402B
Fast-Charge Controller for NiCd/NiMH Batteries
Description
The fast-charge battery controller circuit, U2402B, uses
bipolar technology. The IC enables the designer to create
an efficient and economic charge system. The U2402B
incorporates intelligent multiple-gradient battery-
voltage monitoring and mains phase control for power
management. With automatic top-off charging, the
integrated circuit ensures that the charge device stops
regular charging before the critical stage of overcharging
is achieved. It has two LED driver indications for charge
and temperature status.
Features
D
D
D
D
D
D
D
Multiple gradient monitoring
Temperature window (T
min
/T
max
)
Exact battery voltage measurement without charge
Phase control for charge-current regulation
Top-off and trickle charge function
Two LED outputs for charge status indication
Disabling of d
2
V/dt
2
switch-off criteria
during battery formation
Applications
D
D
D
D
D
D
Portable power tools
Laptop/notebook personal computer
Cellular/cordless phones
Emergency lighting systems
Hobby equipment
Camcorder
D
Battery-voltage check
Block Diagram
18 (20) 17 (19)
16 (18)
14 (15)
13 (14)
12 (13)
11 (12)
Sync
ö
C
ö
R
V
Ref
6.5 V/10 mA
Oscillator
Status control
3 (3)
Phase control
V
ö
i
4 (4)
Scan path
1 (1)
Control unit
Trigger output
Gradient
d
2
V/dt
2
and –dV
Power - on control
Battery
detection
V
Ref
= 5 V
10 (11)
V
Batt
Monitor
0.1 to 4 V
15 (17)
2 (2)
Power supply
V
S
= 8 to 26 V
160 mV
Ref
Temp. control
Sensor
T
max
Charge break
output
5 (5)
6 (6)
7 (8)
8 (9)
9 (10)
( ) SO 20, Pins 7 and 16 n.c.
Figure 1. Block diagram
Order Information
Extended Type Number
U2402B-x
U2402B-xFL
U2402B-xFLG3
Package
DIP18
SO20
SO20
Remarks
Tube
Tube
Taped and reeled
Rev. A4, 08-Nov-99
1 (18)
U2402B
Pin Description
Output
1
18 V
sync
17
ö
C
16
ö
R
15 V
S
Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Symbol
Output
GND
LED2
V
ö
i
OP
O
OP
I
T
max
Sensor
t
p
V
Batt
LED1
S
TM.
Osc
V
Ref
V
S
ö
R
ö
C
GND 2
LED2
V
ö
i
OP
O
OP
I
T
max
3
4
5
6
7
U2402B
14 V
Ref
13 Osc
12 S
TM.
11 LED1
10 V
Batt
Sensor 8
t
p
9
Figure 2. Package: DIP18
V
sync.
Function
Trigger output
Ground
Display output “Green”
Phase angle control input voltage
Operational amplifier output
Operational amplifier input
Maximum temperature
Temperature sensor
Charge break output
Battery voltage
LED display output “Red”
Test mode switch (status control)
Oscillator
Reference output voltage
Supply voltage
Ramp current resistance
Ramp voltage – capacitance
Mains synchronization input
Output
1
20
19
18
17
V
sync
GND 2
LED2
V
ö
i
OP
O
OP
I
3
4
5
6
ö
ö
C
R
V
S
n.c.
V
Ref
Osc
S
TM.
U2402B
16
15
14
13
n.c. 7
T
max
8
Sensor 9
t
p
10
12 LED1
11
V
Batt
Figure 3. Package: SO20
Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Symbol
Output
GND
LED2
V
ö
i
OP
O
OP
I
n.c.
T
max
Sensor
t
p
V
Batt
LED1
S
TM.
Osc
V
Ref
n.c.
V
S
ö
R
ö
C
V
sync.
Function
Trigger output
Ground
Display output “Green”
Phase angle control input voltage
Operational amplifier output
Operational amplifier input
Not connected
Maximum temperature
Temperature sensor
Charge break output
Battery voltage
LED display output “Red”
Test mode switch (status control)
Oscillator
Reference output voltage
Not connected
Supply voltage
Ramp current resistance
Ramp voltage – capacitance
Mains synchronization input
2 (18)
Rev. A4, 08-Nov-99
Rev. A4, 08-Nov-99
Figure 4. Block diagram with external circuit (DIP pinning)
D4
Mains
D5
T1
BC 308
D2
Th1
R10
R8
1k
W
D1
R1
100 k
10
W
R2
D6
2x
560
W
W
W
R3
0.1 F
C6
R13
C3
10 nF
17
Sync
ϕ
16
ϕ
R
560 k
R4
m
From
RT1 / RT2
From Pin 15
VS
10 nF
R5
1k
10 k
W
0.22 F
W
m
R0
270 k
W
D7
Red
D8
Green
D3
Th2
R11
R9
10 k
2.2 k
R7
C2
14
VRef
6.5 V/10 mA
W
13
C0
12
11
W
1 k
W
18
C
Phase control
V
ϕ
i
Oscillator
Status
control
3
To Pin 4
1
Control unit
Trigger output
Gradient
C1
470 F
VS 15
2
Power supply
VS = 8 to 26 V
d2 V/dt 2 & –dV
Scan path
RB2
C7
10 k
RB1
W
1k
I ch
W
Battery
detection
VRef = 5 V
VBatt Monitor
0.1 to 4 V
10
4.7 F
16 k
RB3
m
W
m
Battery
(4 cells)
Power on
control
DC
NTC
4
5
160 mV
Ref
6
Temp. control
Tmax Sensor
Charge break
output
1 F
160 mV
0.2
Rsh
R6
10 k
CR
m
1 F
C4
RT3
24 k
m
7
8
RT1 12 k
RT2
C8
0.1 F
100 k
W
9
To VRef (Pin 14)
U2402B
W
W
W
W
m
3 (18)
U2402B
General Description
The integrated circuit, U2402B, is designed for charging
Nickel-Cadmium (NiCd) and Nickel-Metal-Hydride
(NiMH) batteries. Fast charging results in voltage lobes
when fully charged (figure 5). It supplies two identifica-
tions ( i. e., + d
2
V/dt
2
, and –
D
V) to end the charge
operation at the proper time.
As compared to the existing charge concepts where the
charge is terminated
after voltage lobes
according
to –
D
V and temperature gradient identification, the
U2402B takes into consideration the additional changes
in positive charge curves, according to the second deriva-
tive of the voltage with respect to time (d
2
V/dt
2
). The
charge identification is the sure method of switching off
the fast charge before overcharging the battery. This helps
to give the battery a long life by hindering any marked
increase in cell pressure and temperature.
Even in critical charge applications, such as a reduced
charge current or with NiMH batteries where weaker
charge characteristics are present multiple gradient con-
trol results in very efficient switch-off.
An additional temperature control input increases not
only the performances of the charge switching character-
istics but also prevents the general charging of a battery
whose temperature is outside the specified window.
A constant charge current is necessary for continued
charge-voltage characteristic. This constant current regu-
lation is achieved with the help of internal amplifier phase
control and a simple shunt-current control technique.
All functions relating to battery management can be
achieved with DC-supply charge systems. A DC-DC-
converter or linear regulator should take over the function
of power supply. For further information please refer to
the applications.
*
*
Battery insertion
V
10
5V
Gradient recognition
)
ddtV
2
2
Battery
voltage
check
D
V
D
V,
D
V
monitoring
)
ddtV ,
2
2
active
shorted batteries ignored
t
Fast charge rate I
O
Battery
formation
t
1
= 5 min
Figure 5. Charge function diagram, f
osc
= 800 Hz
Top off
charge rate
1/4 I
O
t
2
v
20 min
Trickle
charge rate
1/256 I
O
4 (18)
Rev. A4, 08-Nov-99
U2402B
Flow Chart Explanation,
f
osc
= 800 Hz (Figures 4, 5 and 6)
Battery pack insertion disables the voltage lock at battery
detection input Pin 10. All functions in the integrated
circuit are reset. For further description, DIP-pinning is
taken into consideration.
Top-Off Charge Stage
By charge disconnection through the + d
2
V/dt
2
mode, the
device switches automatically to a defined protective
top-off charge with a pulse rate of 1/4 I
O
(pulse time,
t
p
= 5.12 s, period, T = 20.48 s).
The top-off charge time is specified for a time of
20 minutes @ 800 Hz.
Battery Insertion and –dV Monitoring
The charging procedure will be carried out if battery
insertion is recognised. If the polarity of the inserted
battery is not according to the specification, the fast
charge rate will stop immediately. After the polarity test,
if positive, the defined fast charge rate, I
O
, begins for the
first 5 minutes according to –dV monitoring. After
5 minutes of charging, the first identification control is
executed.
If the inserted battery has a signal across its terminal of
less than 0.1 V, then the charging procedure is interrupted.
This means that the battery is defective i.e., it is not a
rechargeable battery – “shorted batteries ignored”.
Voltage and temperature measurements across the battery
are carried out during charge break interval (see figure 8),
i.e., currentless or idle measurements.
If the inserted battery is
fully charged,
the –dV control
will signal a charge stop after six measurements
(approximately 110 seconds). All the above mentioned
functions are recognised during the first 5 minutes
according to –dV method. During this time, +d
2
V/dt
2
remains inactive. In this way the battery is protected from
unnecessary damage.
Trickle Charge Stage
When top-off charge is terminated, the device switches
automatically to trickle charge with 1/256 I
O
(t
p
= 5.12 s,
period = 1310.72 s). The trickle continues until the
battery pack is removed.
Basic Description
Power Supply (Figure 4)
The charge controller allows the direct power supply of
8 to 26 V at Pin 15. Internal regulation limits higher input
voltages. Series resistance, R
1
, regulates the supply
current, I
S
, to a maximum value of 25 mA. Series
resistance is recommended to suppress the noise signal,
even below 26 V limitation. It is calculated as follows:
R
1min
R
1max
w
V25–26 V
mA
max
d
2
V/dt
2
-Gradient
If there is no charge stop within the first 5 minutes after
battery insertion, then d
2
V/dt
2
monitoring will be active.
In this actual charge stage, all stop-charge criteria are
active.
v
V
min
– 8 V
I
tot
where
I
tot
= I
S
+ I
RB1
+ I
1
V
max,
V
min
= Rectified voltage
When close to the battery’s capacity limit, the battery
voltage curve will typically rise. As long as the +d
2
V/dt
2
stop-charging criteria are met, the device will stop the fast
charge activities.
I
S
= Current consumption (IC) without load
I
RB1
= Current through resistance, R
B1
I
1
= Trigger current at Pin 1
Rev. A4, 08-Nov-99
5 (18)
查看更多>
参数对比
与U2402B-XFL相近的元器件有:U2402B-XFLG3、U2402B-X。描述及对比如下:
型号 U2402B-XFL U2402B-XFLG3 U2402B-X
描述 Power Supply Support Circuit, BIPolar, PDSO20, SO-20 Power Supply Support Circuit, BIPolar, PDSO20, SO-20 Power Supply Support Circuit, BIPolar, PDIP18, DIP-18
厂商名称 TEMIC TEMIC TEMIC
包装说明 SO-20 SO-20 DIP-18
Reach Compliance Code unknown unknown unknown
模拟集成电路 - 其他类型 POWER SUPPLY SUPPORT CIRCUIT POWER SUPPLY SUPPORT CIRCUIT POWER SUPPLY SUPPORT CIRCUIT
JESD-30 代码 R-PDSO-G20 R-PDSO-G20 R-PDIP-T18
功能数量 1 1 1
端子数量 20 20 18
最高工作温度 85 °C 85 °C 85 °C
最低工作温度 -10 °C -10 °C -10 °C
封装主体材料 PLASTIC/EPOXY PLASTIC/EPOXY PLASTIC/EPOXY
封装形状 RECTANGULAR RECTANGULAR RECTANGULAR
封装形式 SMALL OUTLINE SMALL OUTLINE IN-LINE
认证状态 Not Qualified Not Qualified Not Qualified
表面贴装 YES YES NO
技术 BIPOLAR BIPOLAR BIPOLAR
温度等级 OTHER OTHER OTHER
端子形式 GULL WING GULL WING THROUGH-HOLE
端子位置 DUAL DUAL DUAL
【招聘】单片机工程师
诚聘嵌入式单片机工程师写作者 职位描述 1、不需要坐班,业余时间较多。要求对单片机的软硬件开发均比较...
郭现杰 单片机
无线传输——未来世界的供电方式
摆脱电线并不仅仅意味着不再需要电缆供应商。由于无线高功率传输技术的发展,曾经受限于电源插座的机器...
EEWORLD社区 微控制器 MCU
封闭环境下,芯片该如何进行散热?
有些功率芯片或者Linux芯片,发热量挺大的,在空旷环境下,加个散热片,基本上温度能下来不少。但是...
wangerxian 电源技术
瑞萨单片机DIY活动使用心得
瑞萨单片机使用心得 - 软件安装 1 、前言 前段时间在电子工程世界上看到了的瑞萨电子 ...
zhiwenjing 瑞萨电子MCU
求助wince开发高手 用VS2005开发系统在PDA上播放出flash
用的C# +VS2005+wince5.0模拟器+带wince5.0操作系统的PDA 请教2个问题,...
linliuh WindowsCE
求助:仿真器不能连接的原因!F2812的
我用的是EEWORLD的F2812的实验板,但在仿真器连接过程中,老是报以下的错误信息: Error...
majiansong 微控制器 MCU
热门器件
热门资源推荐
器件捷径:
00 01 02 03 04 05 06 07 08 09 0A 0C 0F 0J 0L 0M 0R 0S 0T 0Z 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 1H 1K 1M 1N 1P 1S 1T 1V 1X 1Z 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 2G 2K 2M 2N 2P 2Q 2R 2S 2T 2W 2Z 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 3G 3H 3J 3K 3L 3M 3N 3P 3R 3S 3T 3V 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4M 4N 4P 4S 4T 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5E 5G 5H 5K 5M 5N 5P 5S 5T 5V 60 61 62 63 64 65 66 67 68 69 6A 6C 6E 6F 6M 6N 6P 6R 6S 6T 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7M 7N 7P 7Q 7V 7W 7X 80 81 82 83 84 85 86 87 88 89 8A 8D 8E 8L 8N 8P 8S 8T 8W 8Y 8Z 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9F 9G 9H 9L 9S 9T 9W
需要登录后才可以下载。
登录取消