首页 > 器件类别 > 无源元件 > 振荡器

VS-500-KFF-GNN-640.0000

SAW Oscillator, 640MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, J-LEADED PACKAGE-6

器件类别:无源元件    振荡器   

厂商名称:Vectron International, Inc.

厂商官网:http://www.vectron.com/

器件标准:

下载文档
器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
Reach Compliance Code
compliant
其他特性
TAPE AND REEL; COMPLEMENTARY OUTPUT
最大控制电压
5 V
最小控制电压
最长下降时间
0.4 ns
频率偏移/牵引率
50 ppm
JESD-609代码
e4
线性度
5%
安装特点
SURFACE MOUNT
标称工作频率
640 MHz
最高工作温度
85 °C
最低工作温度
-40 °C
振荡器类型
SAW OSCILLATOR
输出兼容性
PECL
物理尺寸
13.97mm x 8.89mm x 4.49mm
最长上升时间
0.4 ns
最大压摆率
80 mA
最大供电电压
5.5 V
最小供电电压
4.5 V
标称供电电压
5 V
表面贴装
YES
最大对称度
55/45 %
端子面层
Gold (Au) - with Nickel (Ni) barrier
Base Number Matches
1
文档预览
VS-500
Voltage Controlled SAW Oscillator
Features
Improved High Performance ASIC
Industry Standard Package, 9 x 14 x 4.5 mm
Output Frequencies from 155 MHz to 850 MHz
3.3 V or 5.0 V Operation
At 155.52 MHz, Jitter < 0.50 ps-rms (12 kHz to 20 MHz)
At 622.08 MHz, Jitter < 0.30 ps-rms (50 kHz to 80 MHz)
LV-PECL, PECL, or ECL Configurations
Complementary Outputs
Output Disable Feature
Product is free of lead and compliant to
EC RoHS Directive
Applications
PLL circuits for Clock Smoothing and Frequency Translation
Vcc
COutput
Output
Description
10G Fibre Channel
10GbE LAN / WAN
Standard
INCITS/T11 Project 1413-D
IEEE 802.3ae
ITU-T G.709
GR-253-CORE Issue3
SAW
OC-192
SONET / SDH
Description
Vc
OD
Gnd
The VS-500 is a SAW based voltage controlled oscillator that
operates at the fundamental frequency of the internal SAW
filter. This resonator is a high Q quartz device that enables
the circuit to achieve low phase jitter performance over a wide
operating temperature range. The oscillator is housed in a
hermetically sealed J-lead surface mount package offered on
tape and reel. It has an output disable to facilitate on-board
testing.
Tel: 1-88-VECTRON-1
Website: www.vectron.com
Rev: 11Apr06
Vectron International, 267 Lowell Rd, Hudson NH 03051-4916
Page 1 of 8
VS-500 Voltage Controlled SAW Oscillator
Electrical Performance
Parameter
Frequency
Nominal Frequency
Absolute Pull Range
Linearity
Gain Transfer @ 155.52 MHz (See Pg 5/6)
Gain Transfer @ 622.08 MHz (See Pg 5/6)
Temperature Stability @ 155.52 MHz
Temperature Stability @ 622.08 MHz
Supply
Voltage
Current (No Load)
Outputs
Mid Level
Swing
Current
Rise & Fall Time
Symmetry
Spurious Suppression
Jitter @ 155.52 MHz (See Pg 5/6)
Jitter @ 622.08 MHz (See Pg 5/6)
Control Voltage
Input Impedance (LV-PECL or PECL)
Input Impedance (ECL)
Modulation Bandwidth
Operating Temperature
Package Size
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Symbol Minimum
f
N
APR
Lin
K
V
K
V
f
STAB
f
STAB
V
CC
I
CC
Typical
150 - 850
Maximum
Units
Notes
±50
±5
+691/+435
+434/+281
±100
±150
2.97/4.5
3.3/5.0
55
V
CC
-1.3
850
250
50
60
0.440
0.230
100
10
500
-40
9.0 x 14.0 x 4.5
85
3.63/5.5
80
V
CC
-1.1
20
400
55
MHz
1,2,3
ppm 1,2,3,9/10
%
2,4,9/10
ppm/V
2,9/10
ppm/V
2,9/10
ppm
1,6
ppm
1,6
V
mA
V
mV-pp
mA
ps
%
dBc
ps-rms
ps-rms
kΩ
kΩ
kHz
°C
mm
2,3
3
2,3
2,3
6
5,6
2,3
6
6,7
6,8
6
6
6
1,3
V
CC
-1.5
I
OUT
t
R,
t
F
SYM
φJ
φJ
Z
c
Z
c
BW
T
OP
45
50
See Standard Frequencies and Ordering Information (Pg 8).
Parameters are tested with production test circuit below (Fig 2).
Parameters are tested at ambient temperature with test limits guardbanded for specified operating temperature.
Measured as the maximum deviation from the best straight-line fit, per MIL-0-55310.
Measured from 20% to 80% of a full output swing (Fig 1).
Not tested in production, guaranteed by design, verified at qualification.
Integrated across 12 kHz to 20 MHz, per GR-253-CORE Issue3.
Integrated across 50 kHz to 80 MHz, per GR-253-CORE Issue3.
Tested with Vc = 0.3V to 3.0V.
Tested with Vc = 0.5V to 4.5V.
(-1.3V to +2V)
(+2V)
1
2
3
6
5
4
Output
COutput
t
R
80%
t
F
SYM = 100 x t
A
/ t
B
Vcc - 1.0V
Disable, Enable
(-1.3V, Open)
Vcc - 1.3V
20%
Vcc - 1.6V
(-1.3V)
50Ω
50Ω
t
A
t
B
Test Circuit Notes:
1) To Permit 50Ω Measurement of Outputs, all DC Inputs are Biased Down 1.3V.
2) All Voltage Sources Contain Bypass Capacitors to Minimize Supply Noise.
3) 50Ω Terminations are Within Test Equipment.
Figure 1. 10K LV-PECL Waveform
Figure 2. 3.3V Test Circuit
Vectron International, 267 Lowell Rd, Hudson NH 03051-4916
Page 2 of 8
Tel: 1-88-VECTRON-1
Website: www.vectron.com
Rev: 11Apr06
VS-500 Voltage Controlled SAW Oscillator
Outline Diagram
6
5
4
Pad Layout
VS-500-LFF-GNN
XXX.XXX
VI YWW
1
2
3
8.89±0.15
[0.350±0.006]
7.63
[0.300]
1.27
[0.050]
13.97±0.20
[0.550±0.008]
0.46±0.05
[0.018±0.002]
[
4.49+0.20
-0.30
+0.008
0.177-0.012
8.80
[0.346]
]
3.00
[0.118]
2.54
[0.100]
5.08
[0.200]
mm
[inch]
5.08±0.13
[0.200±0.005]
2.54±0.13
[0.100±0.005]
mm
[inch]
Pin Out
Pin
1
2
Symbol
V
C
OD
Function
VCSO Control Voltage
Output Disable
*
Disabled = LV-CMOS Logic 0 (or GND)
Enabled = LV-CMOS Logic 1 (or Open)
Case and Electrical Ground
VCSO Output
VCSO Complementary Output
3
4
5
6
GND
Output
COutput
V
CC
Power Supply Voltage (3.3V / 5.0V
±10%)
*
For 5.0V Operation, CMOS Levels Should Be Applied.
Tape and Reel (EIA-481-2-A)
Po
ØDo
W2
F
W
D
C
N
A
P1
W1
B
Tape Dimensions (mm)
Dimension
Tolerance
VS-500
Reel Dimensions (mm)
F
Do
Typ
1.5
W
Typ
24
Po
Typ
4
P1
Typ
12
A
Typ
330
B
Min
1.5
C
Typ
13
D
Min
20.2
N
Min
100
W1
Typ
24.4
W2
Max
30.4
Typ
11.5
# Per
Reel
200
Vectron International, 267 Lowell Rd, Hudson NH 03051-4916
Page 3 of 8
Tel: 1-88-VECTRON-1
Website: www.vectron.com
Rev: 11Apr06
VS-500 Voltage Controlled SAW Oscillator
Absolute Maximum Ratings
Parameter
Power Supply
Output Current
Voltage Control Range
Storage Temperature
Soldering Temp/Time
Symbol
V
CC
Iout
V
C
TS
T
LS
Ratings
0 to 6
25
0 to V
CC
-55 to 125
220/10
Unit
V
mA
V
°C
°C/sec
Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation
is not implied at these or any other conditions in excess of conditions represented in the operational sections of
this datasheet. Exposure to absolute maximum ratings for extended periods may adversely affect device
reliability.
Suggested Output Load Configurations (3.3V Operation)
+3.3V
0.10
µF
0.01
µF
0.10
µF
0.01
µF
150Ω
150Ω
+3.3V
+3.3V
Vc
OD
Gnd
1
2
3
6
5
4
Vcc
COutput
Output
Z = 50Ω
Z = 50Ω
100Ω
Vc
OD
Gnd
1
2
3
6
5
4
Vcc
COutput Z = 50Ω
Output
Z = 50Ω
40Ω
40Ω
49Ω
49Ω
240Ω
240Ω
LV-PECL to LV-PECL:
For short transmission lengths, the power
consumption could be reduced by removing the 100Ω resistor and
doubling the value of the pull down resistors.
LV-PECL to LVDS:
Restricted for short transmission lengths.
Configuration may require modification depending on LVDS receiver.
+3.3V
0.10
µF
0.01
µF
0.10
µF
0.01
µF
+2.0V
Vc
OD
Gnd
1
2
3
6
5
4
Vcc
COutput
Output
0.01
µF
Vc
OD
-1.3V
1
2
3
6
5
4
Vcc
COutput
Output
0.01
µF
240Ω
240Ω
Functional Test:
Allows standard power supply configuration.
Since AC coupled, the LV-PECL levels cannot be measured.
Production Test:
Allows direct DC coupling into 50Ω measurement
equipment. Must bias the power supplies as shown. Similar to Figure 1.
Vectron International, 267 Lowell Rd, Hudson NH 03051-4916
Page 4 of 8
Tel: 1-88-VECTRON-1
Website: www.vectron.com
Rev: 11Apr06
VS-500 Voltage Controlled SAW Oscillator
Typical Characteristics (3.3V Operation)
1100
1000
900
800
700
600
500
400
300
200
100
0
-100
-200
-300
-400
-500
-600
-700
-800
-900
0.3
0.6
0.9
1.2
Frequency (PPM)
Vc Pull Characteristics (22.5
o
C)
Typical Gain Transfer @ 155.52 = +691 ppm/V
Typical Gain Transfer @ 622.08 = +434 ppm/V
155_3V Vc Pull
622_3V Vc Pull
y = 691.39x - 1010.34
y = 433.82x - 606.16
Linear (155_3V Vc Pull)
Linear (622_3V Vc Pull)
1.5
1.8
2.1
2.4
2.7
3
Control Voltage (V)
Calculated Jitter @ 155.52 MHz (22.5
o
C)
SONET OC-48 (12kHz-20MHz) = 0.442 ps-rms; 3.09 ps-pp
SONET OC-192 (50kHz-80MHz) = 0.685 ps-rms; 4.80 ps-pp
Calculated Jitter @ 622.08 MHz (22.5
o
C)
SONET OC-48 (12kHz-20MHz) = 0.244 ps-rms; 1.71 ps-pp
SONET OC-192 (50kHz-80MHz) = 0.214 ps-rms; 1.50 ps-pp
Vectron International, 267 Lowell Rd, Hudson NH 03051-4916
Page 5 of 8
Tel: 1-88-VECTRON-1
Website: www.vectron.com
Rev: 11Apr06
查看更多>
如何用Labview来对Ginkgo 2进行二次开发
前言: Ginkgo 2支持多种语言平台的开发,目前支持C#、C++ Builder、Labwi...
viewtool 嵌入式系统
新能源汽车关键技术数据速查手册
本书主要介绍了新能源汽车关键技术数据,如电池、电机、控制器、充电器、端子定义、熔丝和继电器分布,以...
arui1999 下载中心专版
桥式传感器实现精准测量的原理,以及应变片实现温度补偿的原理
桥式传感器实现精准测量的原理,以及应变片实现温度补偿的原理 1.为什么四个电阻就可以抵消温度漂移...
QWE4562009 测试/测量
请问WinCE6下面怎么样将虚拟地址转换为物理地址?
在WinCE6里,怎么样得到一个user space的虚拟地址所对应的物理地址? 以前的LockPa...
北风good WindowsCE
开关电源仿真 PSPICE和SPICE 3应用-2007.pdf
寒假回家前人品爆发第九帖。 书名:开关电源仿真 PSPICE和SPICE 3应用 作者:Stev...
wangjiafu1985 Microchip MCU
程序运行异常求解答
void tm0_isr() interrupt 1 //10ms中断 { Key_S...
cccztw 51单片机
热门器件
热门资源推荐
器件捷径:
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR SS ST SU SV SW SX SY SZ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 TA TB TC TD TE TF TG TH TI TJ TK TL TM TN TO TP TQ TR TS TT TU TV TW TX TY TZ U0 U1 U2 U3 U4 U6 U7 U8 UA UB UC UD UE UF UG UH UI UJ UK UL UM UN UP UQ UR US UT UU UV UW UX UZ V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 VA VB VC VD VE VF VG VH VI VJ VK VL VM VN VO VP VQ VR VS VT VU VV VW VX VY VZ W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 WA WB WC WD WE WF WG WH WI WJ WK WL WM WN WO WP WR WS WT WU WV WW WY X0 X1 X2 X3 X4 X5 X7 X8 X9 XA XB XC XD XE XF XG XH XK XL XM XN XO XP XQ XR XS XT XU XV XW XX XY XZ Y0 Y1 Y2 Y4 Y5 Y6 Y9 YA YB YC YD YE YF YG YH YK YL YM YN YP YQ YR YS YT YX Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z8 ZA ZB ZC ZD ZE ZF ZG ZH ZJ ZL ZM ZN ZP ZR ZS ZT ZU ZV ZW ZX ZY
需要登录后才可以下载。
登录取消