首页 > 器件类别 > 无源元件 > 振荡器

VS-500-LFF-GNN-167.3316

SAW Oscillator, 167.3316MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, J-LEADED PACKAGE-6

器件类别:无源元件    振荡器   

厂商名称:Vectron International, Inc.

厂商官网:http://www.vectron.com/

器件标准:  

下载文档
器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
厂商名称
Vectron International, Inc.
Reach Compliance Code
compliant
其他特性
TAPE AND REEL; COMPLEMENTARY OUTPUT
最大控制电压
3.3 V
最小控制电压
最长下降时间
0.4 ns
频率偏移/牵引率
50 ppm
JESD-609代码
e4
线性度
5%
安装特点
SURFACE MOUNT
标称工作频率
167.3316 MHz
最高工作温度
85 °C
最低工作温度
-40 °C
振荡器类型
SAW OSCILLATOR
输出兼容性
PECL
物理尺寸
13.97mm x 8.89mm x 4.49mm
最长上升时间
0.4 ns
最大压摆率
80 mA
最大供电电压
3.63 V
最小供电电压
2.97 V
标称供电电压
3.3 V
表面贴装
YES
最大对称度
55/45 %
端子面层
Gold (Au) - with Nickel (Ni) barrier
文档预览
VS-500
Voltage Controlled SAW Oscillator
Features
Improved High Performance ASIC
Industry Standard Package, 9 x 14 x 4.5 mm
Output Frequencies from 155 MHz to 850 MHz
3.3 V or 5.0 V Operation
At 155.52 MHz, Jitter < 0.50 ps-rms (12 kHz to 20 MHz)
At 622.08 MHz, Jitter < 0.30 ps-rms (50 kHz to 80 MHz)
LV-PECL, PECL, or ECL Configurations
Complementary Outputs
Output Disable Feature
Product is free of lead and compliant to
EC RoHS Directive
Applications
PLL circuits for Clock Smoothing and Frequency Translation
Vcc
COutput
Output
Description
10G Fibre Channel
10GbE LAN / WAN
Standard
INCITS/T11 Project 1413-D
IEEE 802.3ae
ITU-T G.709
GR-253-CORE Issue3
SAW
OC-192
SONET / SDH
Description
Vc
OD
Gnd
The VS-500 is a SAW based voltage controlled oscillator that
operates at the fundamental frequency of the internal SAW
filter. This resonator is a high Q quartz device that enables
the circuit to achieve low phase jitter performance over a wide
operating temperature range. The oscillator is housed in a
hermetically sealed J-lead surface mount package offered on
tape and reel. It has an output disable to facilitate on-board
testing.
Tel: 1-88-VECTRON-1
Website: www.vectron.com
Rev: 11Apr06
Vectron International, 267 Lowell Rd, Hudson NH 03051-4916
Page 1 of 8
VS-500 Voltage Controlled SAW Oscillator
Electrical Performance
Parameter
Frequency
Nominal Frequency
Absolute Pull Range
Linearity
Gain Transfer @ 155.52 MHz (See Pg 5/6)
Gain Transfer @ 622.08 MHz (See Pg 5/6)
Temperature Stability @ 155.52 MHz
Temperature Stability @ 622.08 MHz
Supply
Voltage
Current (No Load)
Outputs
Mid Level
Swing
Current
Rise & Fall Time
Symmetry
Spurious Suppression
Jitter @ 155.52 MHz (See Pg 5/6)
Jitter @ 622.08 MHz (See Pg 5/6)
Control Voltage
Input Impedance (LV-PECL or PECL)
Input Impedance (ECL)
Modulation Bandwidth
Operating Temperature
Package Size
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Symbol Minimum
f
N
APR
Lin
K
V
K
V
f
STAB
f
STAB
V
CC
I
CC
Typical
150 - 850
Maximum
Units
Notes
±50
±5
+691/+435
+434/+281
±100
±150
2.97/4.5
3.3/5.0
55
V
CC
-1.3
850
250
50
60
0.440
0.230
100
10
500
-40
9.0 x 14.0 x 4.5
85
3.63/5.5
80
V
CC
-1.1
20
400
55
MHz
1,2,3
ppm 1,2,3,9/10
%
2,4,9/10
ppm/V
2,9/10
ppm/V
2,9/10
ppm
1,6
ppm
1,6
V
mA
V
mV-pp
mA
ps
%
dBc
ps-rms
ps-rms
kΩ
kΩ
kHz
°C
mm
2,3
3
2,3
2,3
6
5,6
2,3
6
6,7
6,8
6
6
6
1,3
V
CC
-1.5
I
OUT
t
R,
t
F
SYM
φJ
φJ
Z
c
Z
c
BW
T
OP
45
50
See Standard Frequencies and Ordering Information (Pg 8).
Parameters are tested with production test circuit below (Fig 2).
Parameters are tested at ambient temperature with test limits guardbanded for specified operating temperature.
Measured as the maximum deviation from the best straight-line fit, per MIL-0-55310.
Measured from 20% to 80% of a full output swing (Fig 1).
Not tested in production, guaranteed by design, verified at qualification.
Integrated across 12 kHz to 20 MHz, per GR-253-CORE Issue3.
Integrated across 50 kHz to 80 MHz, per GR-253-CORE Issue3.
Tested with Vc = 0.3V to 3.0V.
Tested with Vc = 0.5V to 4.5V.
(-1.3V to +2V)
(+2V)
1
2
3
6
5
4
Output
COutput
t
R
80%
t
F
SYM = 100 x t
A
/ t
B
Vcc - 1.0V
Disable, Enable
(-1.3V, Open)
Vcc - 1.3V
20%
Vcc - 1.6V
(-1.3V)
50Ω
50Ω
t
A
t
B
Test Circuit Notes:
1) To Permit 50Ω Measurement of Outputs, all DC Inputs are Biased Down 1.3V.
2) All Voltage Sources Contain Bypass Capacitors to Minimize Supply Noise.
3) 50Ω Terminations are Within Test Equipment.
Figure 1. 10K LV-PECL Waveform
Figure 2. 3.3V Test Circuit
Vectron International, 267 Lowell Rd, Hudson NH 03051-4916
Page 2 of 8
Tel: 1-88-VECTRON-1
Website: www.vectron.com
Rev: 11Apr06
VS-500 Voltage Controlled SAW Oscillator
Outline Diagram
6
5
4
Pad Layout
VS-500-LFF-GNN
XXX.XXX
VI YWW
1
2
3
8.89±0.15
[0.350±0.006]
7.63
[0.300]
1.27
[0.050]
13.97±0.20
[0.550±0.008]
0.46±0.05
[0.018±0.002]
[
4.49+0.20
-0.30
+0.008
0.177-0.012
8.80
[0.346]
]
3.00
[0.118]
2.54
[0.100]
5.08
[0.200]
mm
[inch]
5.08±0.13
[0.200±0.005]
2.54±0.13
[0.100±0.005]
mm
[inch]
Pin Out
Pin
1
2
Symbol
V
C
OD
Function
VCSO Control Voltage
Output Disable
*
Disabled = LV-CMOS Logic 0 (or GND)
Enabled = LV-CMOS Logic 1 (or Open)
Case and Electrical Ground
VCSO Output
VCSO Complementary Output
3
4
5
6
GND
Output
COutput
V
CC
Power Supply Voltage (3.3V / 5.0V
±10%)
*
For 5.0V Operation, CMOS Levels Should Be Applied.
Tape and Reel (EIA-481-2-A)
Po
ØDo
W2
F
W
D
C
N
A
P1
W1
B
Tape Dimensions (mm)
Dimension
Tolerance
VS-500
Reel Dimensions (mm)
F
Do
Typ
1.5
W
Typ
24
Po
Typ
4
P1
Typ
12
A
Typ
330
B
Min
1.5
C
Typ
13
D
Min
20.2
N
Min
100
W1
Typ
24.4
W2
Max
30.4
Typ
11.5
# Per
Reel
200
Vectron International, 267 Lowell Rd, Hudson NH 03051-4916
Page 3 of 8
Tel: 1-88-VECTRON-1
Website: www.vectron.com
Rev: 11Apr06
VS-500 Voltage Controlled SAW Oscillator
Absolute Maximum Ratings
Parameter
Power Supply
Output Current
Voltage Control Range
Storage Temperature
Soldering Temp/Time
Symbol
V
CC
Iout
V
C
TS
T
LS
Ratings
0 to 6
25
0 to V
CC
-55 to 125
220/10
Unit
V
mA
V
°C
°C/sec
Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation
is not implied at these or any other conditions in excess of conditions represented in the operational sections of
this datasheet. Exposure to absolute maximum ratings for extended periods may adversely affect device
reliability.
Suggested Output Load Configurations (3.3V Operation)
+3.3V
0.10
µF
0.01
µF
0.10
µF
0.01
µF
150Ω
150Ω
+3.3V
+3.3V
Vc
OD
Gnd
1
2
3
6
5
4
Vcc
COutput
Output
Z = 50Ω
Z = 50Ω
100Ω
Vc
OD
Gnd
1
2
3
6
5
4
Vcc
COutput Z = 50Ω
Output
Z = 50Ω
40Ω
40Ω
49Ω
49Ω
240Ω
240Ω
LV-PECL to LV-PECL:
For short transmission lengths, the power
consumption could be reduced by removing the 100Ω resistor and
doubling the value of the pull down resistors.
LV-PECL to LVDS:
Restricted for short transmission lengths.
Configuration may require modification depending on LVDS receiver.
+3.3V
0.10
µF
0.01
µF
0.10
µF
0.01
µF
+2.0V
Vc
OD
Gnd
1
2
3
6
5
4
Vcc
COutput
Output
0.01
µF
Vc
OD
-1.3V
1
2
3
6
5
4
Vcc
COutput
Output
0.01
µF
240Ω
240Ω
Functional Test:
Allows standard power supply configuration.
Since AC coupled, the LV-PECL levels cannot be measured.
Production Test:
Allows direct DC coupling into 50Ω measurement
equipment. Must bias the power supplies as shown. Similar to Figure 1.
Vectron International, 267 Lowell Rd, Hudson NH 03051-4916
Page 4 of 8
Tel: 1-88-VECTRON-1
Website: www.vectron.com
Rev: 11Apr06
VS-500 Voltage Controlled SAW Oscillator
Typical Characteristics (3.3V Operation)
1100
1000
900
800
700
600
500
400
300
200
100
0
-100
-200
-300
-400
-500
-600
-700
-800
-900
0.3
0.6
0.9
1.2
Frequency (PPM)
Vc Pull Characteristics (22.5
o
C)
Typical Gain Transfer @ 155.52 = +691 ppm/V
Typical Gain Transfer @ 622.08 = +434 ppm/V
155_3V Vc Pull
622_3V Vc Pull
y = 691.39x - 1010.34
y = 433.82x - 606.16
Linear (155_3V Vc Pull)
Linear (622_3V Vc Pull)
1.5
1.8
2.1
2.4
2.7
3
Control Voltage (V)
Calculated Jitter @ 155.52 MHz (22.5
o
C)
SONET OC-48 (12kHz-20MHz) = 0.442 ps-rms; 3.09 ps-pp
SONET OC-192 (50kHz-80MHz) = 0.685 ps-rms; 4.80 ps-pp
Calculated Jitter @ 622.08 MHz (22.5
o
C)
SONET OC-48 (12kHz-20MHz) = 0.244 ps-rms; 1.71 ps-pp
SONET OC-192 (50kHz-80MHz) = 0.214 ps-rms; 1.50 ps-pp
Vectron International, 267 Lowell Rd, Hudson NH 03051-4916
Page 5 of 8
Tel: 1-88-VECTRON-1
Website: www.vectron.com
Rev: 11Apr06
查看更多>
WDM驱动程序如何手动安装
本人写了一个WDM驱动,它本身不与硬件打交道,只是起到与两个驱动程序通信的功能。 现在.sys,.i...
yuchuang15 嵌入式系统
新手写的驱动源码,请大家看是否正确!
新手写的wince下的串口驱动,请大家看看驱动的框架是否是这样写,在XXX_Init()中的代码是否...
zcwell 嵌入式系统
220V开关控制电路
请问C2和R11的作用是什么 去掉会有什么影响 ? 220V开关控制电路 『C2和R11的作用...
tangwei8802429 模拟电子
GD32代码库中关于DMA的一个小问题
GD32提供了自己的代码库,但我在使用中感觉不同版本的代码库延续性很不好。 一个其他电脑上编译正常的...
yang_alex GD32 MCU
Q1的作用
Q1的作用 Q1的作用 是吗? 利用漏电流吧? ...
eeleader 工控电子
测评汇总:《硬件设计指南:从器件认知到手机基带设计》
活动详情: 【《硬件设计指南:从器件认知到手机基带设计》】 更新至 2024-10-27 测评...
EEWORLD社区 测评中心专版
热门器件
热门资源推荐
器件捷径:
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF EG EH EI EJ EK EL EM EN EO EP EQ ER ES ET EU EV EW EX EY EZ F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF FG FH FI FJ FK FL FM FN FO FP FQ FR FS FT FU FV FW FX FY FZ G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 GA GB GC GD GE GF GG GH GI GJ GK GL GM GN GO GP GQ GR GS GT GU GV GW GX GZ H0 H1 H2 H3 H4 H5 H6 H7 H8 HA HB HC HD HE HF HG HH HI HJ HK HL HM HN HO HP HQ HR HS HT HU HV HW HX HY HZ I1 I2 I3 I4 I5 I6 I7 IA IB IC ID IE IF IG IH II IK IL IM IN IO IP IQ IR IS IT IU IV IW IX J0 J1 J2 J6 J7 JA JB JC JD JE JF JG JH JJ JK JL JM JN JP JQ JR JS JT JV JW JX JZ K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 KA KB KC KD KE KF KG KH KI KJ KK KL KM KN KO KP KQ KR KS KT KU KV KW KX KY KZ
需要登录后才可以下载。
登录取消