Temperature Compensated Crystal Oscillator (VC-TCXO)
Data sheet
MODEL
:
TG2520SBN 27.000000 MHz PCGNDM
Product. No.
:
X1G0051510244xx
Please refer to the 10.Packing information about xx (last 2 digits)
SEIKO EPSON CORPORATION
Pb free.
Complies with EU RoHS directive.
*About the products without the Pb-free mark.
Contains Pb in products exempted by EU RoHS directive.
(Contains Pb in sealing glass, high melting temperature type solder or other.)
INTRODUCTION
1. Any part of this material may not be reproduced or duplicated in any form or any means without the
written permission of Seiko Epson.
2. This sheet is not intended to guarantee or provide an approval of implementation of industrial patents.
[ 1 ] Characteristics
· Package size (2.5 mm×2.0 mm×0.8 mm)
· High stability VC-TCXO
· Output waveform : Clipped sine wave
· Reference weight Typ.15.0mg
[ 2 ] Absolute maximum ratings
Parameter
Symbol
Vcc-GND
Vc-GND
T_stg
Supply voltage
Frequency control voltage
Storage temperature range
Min.
-0.3
-0.3
-40
Specifications
Typ.
Max.
-
+4.0
-
Vcc+0.3
-
+90
Unit
V
V
°C
Conditions
-
Vc Terminal
Storage as single product
[ 3 ] Recommended operating conditions
Specifications
Unit
Conditions
Min.
Typ.
Max.
-
Vcc
2.6
-
3.63
V
Supply voltage
-
GND
0
-
0
V
Vc=1.5 +/-1.0V
Frequency control voltage
Vc
0.5
1.5
2.5
V
-
Operating temperature range
T_use
-40
-
+85
°C
-
Load_R
9
10
11
kΩ
Output load
-
Load_C
9
10
11
pF
DC-cut capacitor *
Cc
0.01
-
-
μF
* DC-cut capacitor is not included in this TCXO. Please attach an external DC-cut capacitor to the out pin.
Parameter
Symbol
[ 4 ] Frequency characteristics
( 1 ) Frequency characteristics
Parameter
(Vcc=2.6 to 3.63 V, GND=0.0 V, Vc=1.5 V, Load=10 kΩ // 10 pF, T_use=+25°C)
Symbol
fo
f_tol
f_tol
fo-Tc
fo-Load
fo-Vcc
Output Frequency
Frequency tolerance
Frequency tolerance *1
Frequency / temperature
characteristics
Frequency / load coefficient
Frequency / voltage coefficient
Min.
-
-0.5
-1.5
-0.5
Specifications
Typ.
27
-
-
-
Max.
-
+0.5
+1.5
+0.5
Unit
MHz
x10⁻⁶
x10⁻⁶
x10⁻⁶
x10⁻⁶
x10⁻⁶
x10⁻⁶
x10⁻⁶
Conditions
T_use=+25°C+/-2°C
Before reflow
T_use=+25°C+/-2°C
After 2 reflows *2
T_use=-40°C to +85°C
(Reference to +25°C)
Load+/-10%
Vcc +/-5% *3
T_use = +25ºC first year
T_use = +25ºC 10 years
-0.1
-
+0.1
-0.1
-
+0.1
-0.5
-
+0.5
Frequency aging
f_age
-3.5
-
+3.5
*1 Include initial frequency tolerance and frequency deviation after reflow cycles.
*2 Measured in the elapse of 24 hours after reflow soldering.
*3 Vcc +/- 5% must be in operating supply voltage range (2.6 V to 3.63 V)
2
( 2 ) Frequency control characteristics
Parameter
(Vcc=2.6 to 3.63 V, GND=0.0 V, Vc=1.5 V, Load=10 kΩ // 10 pF, T_use=+25°C)
Symbol
f_cont
Zin
-
Frequency control range
Input impedance
Frequency change polarity
Specifications
Min.
Typ.
Max.
-12.0
-
-8.0
+8.0
-
+12.0
500
-
-
Positive polarity
Unit
x10⁻⁶
x10⁻⁶
kΩ
-
Vc=0.5V
Vc=2.5V
Conditions
Vc-GND(DC Level)
-
[ 5 ] Electrical characteristics
Parameter
(Vcc=2.6 to 3.63 V, GND=0.0 V, Vc=1.5 V, Load=10 kΩ // 10 pF, T_use=+25°C)
Symbol
Icc
Vp-p
SYM
t_sta
Current consumption
Output level
Symmetry
Start up time
Min.
-
0.8
45
-
-
Specifications
Typ.
-
-
50
-
-
-
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Max.
1.4
-
55
2.0
1.0
-10.0
-
-
-
-
-
-
-
Unit
mA
V
%
ms
ms
dBc
Conditions
-
Peak to peak voltage
GND level (DC-cut)
Until frequency has been
reached within +/-0.5x10⁻⁶ of
final freq.
Until output signal has been
reached min 90% of final
3rd harmonics
1Hz offset
10Hz offset
100Hz offset
Harmonics
-
Phase noise
L(f)
-
-
-
-
-
-
-
-
dBc/Hz
1kHz offset
10kHz offset
100kHz offset
1MHz offset
3
[ 6 ] Test circuit
1) Output Load : Load_R // Load_C = 10 kΩ // 10 pF
DC-cut
Capacitor
Test Point
Vcc
Supply
Voltage
By-pass
Capacitor
0.01 to
0.1
F
Vc
OUT
GND
Load_C
Control
Voltage
Load_R
2) Current consumption
DC-cut
Capacitor
A
Supply
Voltage
By-pass
Capacitor
0.01 to
0.1
F
Vcc
Vc.
OUT
GND
Load_C
Control
Voltage
Load_R
3) Conditions
1. Oscilloscope: Impedance Min. 1MΩ
Input capacitance Max. 10 pF
Band width Min. 300 MHz
Impossible to measure both frequency and wave form at the same time.
(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)
2. Load_C includes probe capacitance.
3. A capacitor (By-pass:0.01 to 0.1 μF) is placed between Vcc and GND,and closely to TCXO.
4. Use the current meter whose internal impedance value is small.
5. Power Supply
Impedance of power supply should be as low as possible.
6. GND pin should be connected to low impedance GND.
4
[ 7 ] Outline drawing unit:mm
#4
#3
[ 8 ] Recommended foot print unit:mm
#4
0.8
#3
2.0±0.2
1.0
#1
2.5±0.2
#2
#1
2.1
#2
(0.38)
0.8±0.1
0.5±0.1
#1
#2
(0.75)
Pin #
1
2
3
4
Connection
Vc
GND
OUT
Vcc
0.6±0.1
C0.2
#4
(0.55)
1.5±0.1
#3
To maintain stable operation, provide
a 0.01 to 0.1 μF by-pass capacitor at a location
as near as possible to the power source
terminal of the crystal product
(between Vcc - GND).
Material
Ceramics(Cavity)
Au plated nickel(Electric terminal)
Fe-Ni-Co(Lid)
[ 9 ] Reflow profile
Temperature[C]
300
250
200
150
100
50
Time
+25CtoPeak
0
60
120 180 240 300 360 420 480 540 600 660 720 780
Time[s]
;+217C
Tsmax;+200C
TL
TP
;+260C
+255C
Avg.
Ramp-up
3
C/sMax.
tp
;20sto40s
tL
60sto150s
(+217Cover)
Ramp-down
6C/sMax.
Tsmin;+150C
ts
60sto180s
(+150Cto+200C)
5
1.4