文档简介
介绍增量贝叶斯分类器的原理,提出一种基于类支持度的优化增量贝叶斯分类器学习算法。在增量学习过程的样本选择问题上,算法引入一个类支持度因子λ,根据λ的大小逐次从测试样本集中选择样本加入分类器。实验表明,在训练数据集较小的情况下,该算法比原增量贝叶斯分类算法具有更高的精度,能大幅度减少增量学习样本优选的计算时间。关键词:贝叶斯分类器;分类算法;增量学习
评论
加载更多
推荐下载
查看更多
精选文集
推荐帖子