普通GPS接收机在特殊环境下,如在高楼林立的城市中心,林木遮挡的森林公路,特别是在隧道和室内环境的情况下,由于卫星信号非常微弱,载噪比(Carrier Noise Ratio,C/No)通常都在34dB-Hz以下,很难有效捕获到卫星信号,导致无法正常定位。恶劣条件下的定位有广阔的发展和应用前景,特别是在交通事故、火灾和地震等极端环境下,快速准确定位当事者所处位置对于降低事态损失和营救受伤者是极为重要的。欧美和日本等发达国家也都制定了相应的提高恶劣条件下高灵敏度定位能力的发展政策。而高灵敏度GPS接收机定位的关键在于GPS微弱信号的处理。 本课题的主要研究内容是针对GPS微弱信号改进处理方法。针对传统GPS接收机信号捕获中的串行搜索方法提出了基于批处理的微弱信号捕获方法,来提高低信噪比情况下微弱信号的捕获能力,实现快速高灵敏度的准确捕获;针对捕获微弱信号处理大量数据导致的运算量激增,运用双块零拓展(Double Block Zero Padding,DBZP)处理方法减少运算量同时缩短捕获时间。针对传统GPS接收机延迟锁相环跟踪算法提出了基于卡尔曼滤波的新型捕获算法,减小延迟锁相环失锁造成的信号跟踪丢失概率,来提高恶劣环境下低信噪比信号的跟踪能力,实现微弱信号的连续可靠跟踪。通过提高GPS微弱信号的捕获与跟踪能力,进而使GPS接收机在恶劣环境下卫星信号微弱时能够实现较好的定位与导航。 通过拟合GPS接收机实际接收到的原始数据,构造出不同载噪比的数字信号,分别对提出的针对微弱信号的捕获与跟踪算法进行仿真比较验证,结果表明,对接收机后端信号处理部分作出的算法改进使得GPS接收机可以更好的处理微弱信号,并且具有较高的灵敏度和精度。文章同时针对提出的数据处理特征使用FPGA技术对算法主要的数据处理部分进行了初步的构架实现并进行了板级验证,结果表明,利用FPGA技术可以较好的实现算法的数据处理功能。文章最后给出了结论,通过提出的基于批处理和基于DBZP方法的捕获算法以及基于卡尔曼滤波的信号跟踪算法,可以有效地解决微弱GPS信号处理的难题,进而实现微弱信号环境下的定位与导航。