文档简介
《机器学习导论(原书第2版)》作者:[土耳其] Ethem Alpaydin,译者:范明 / 昝红英 / 牛常勇,2014年出版。
全面讨论机器学习方法和技术,层次合理、叙述清晰、难度适中。
涵盖了经典的机器学习算法和理论,同时补充了近年来新出现的机器学习方法。
最佳的机器学习入门教材。
《机器学习导论(原书第2版)》讨论了机器学习在统计学、模式识别、神经网络、人工智能、信号处理等不同领域的应用,其中涵盖了监督学习、贝叶斯决策理论、参数方法、多元方法、多层感知器、局部模型、隐马尔可夫模型、分类算法评估和比较以及增强学习。
《机器学习导论(原书第2版)》可供完成计算机程序设计、概率论、微积分和线性代数课程的高年级本科生和研究生使用,也可供对机器学习感兴趣的工程技术人员参考。
评论
加载更多
推荐下载
查看更多
精选文集
推荐帖子