Scalable and modularized RTL compilation of Convolutional Neural Networks onto FPGA
作者:Yufei Ma, Yu Cao, Jae-sun Seo, Naveen Suda
Despite its popularity, deploying Convolutional Neural Networks (CNNs) on a portable system is still challenging due to large data volume, intensive computation and frequent memory access. Although previous FPGA acceleration schemes generated by high-level synthesis tools (i.e., HLS, OpenCL) have allowed for fast design optimization, hardware inefficiency still exists when allocating FPGA resources to maximize parallelism and throughput. A direct hardware-level design (i.e., RTL) can improve the efficiency and achieve greater acceleration. However, this requires an in-depth understanding of both the algorithm structure and the FPGA system architecture. In this work, we present a scalable solution that integrates the flexibility of high-level synthesis and the finer level optimization of an RTL implementation. The cornerstone is a compiler that analyzes the CNN structure and parameters, and automatically generates a set of modular and scalable computing primitives that can accelerate various deep learning algorithms.