网络分析仪的误差、校准和应用
2016-07-27 来源:mwrf
图 完整的两端口网络分析仪源的不确定性
首先,第一个不确定性是传输信号和反射信号由于在频率上或者分别正,反向的轨道导致的信号丢失。其次,DUT的输入阻抗和网络分析仪或系统阻抗的差异。同样,DUT输出端也存在类似情况,它们分别属于源匹配和负载匹配。
用于信号分离的定向耦合器的效率,也需要考虑。理想的定向耦合器在耦合臂产生输出信号,它是与主臂一个方向上的标准信号成比例,而相反方向的信号不产生输出信号。耦合器输出(耦合臂)和标准输入信号(直通臂)的区别是耦合系数。耦合系数通常在10分贝到30分贝之间,意味着当输入信号以适当方向通过直通臂时,输出RF功率电平比其小10到30分贝。
定向耦合器对于反方向的信号不产生输出。但实际上,这是很难实现的。尽管是很小的,反方向的信号通过实际的耦合器仍然会在输出端产生不必要的响应。这种不需要的信号定义为耦合器泄露。耦合系数与耦合泄露的差别称为耦合器的定向性。
最后是隔离。端口2的接收器检测到端口1辐射或传导的少量的信号,在现代网络分析仪,这种不必要的泄露通常很小。总的来说,不影响测量,除非 DUT有很高的损失。尽管推荐,在许多现代矢量网络分析仪中。隔离在校准中只是一种可选的操作。
一个完整的网络分析仪正向不确定性的来源包括:传输和反射追踪;负载和源匹配;定向性和隔离,这些再结合反向6个误差项,共有12误差项。用户校准需要充分考虑这12个误差,以便得到适当的修正系数来用到测量数据当中。这项修正是矢量网络分析仪的显著的精度的主要原因。
网络分析的校准
RF设备的校准经常需要把仪器周期性的送到一个经过认定的仪器校准实验室来进行以确保该仪器运行在生产商的说明以内,实验室也往往把仪器的性能调整到一个标准,比如说国家标准和技术研究院所指定的标准。(NIST)。
网络分析仪也不例外。它们太需要周期性的校准,以至于有时达不到高的精准度,用户的校准也经常被需要。网络分析仪的校准通常通过一个网络分析仪的套包的一系列校准标准或者是用户制定,用户定义的标准来完成。一系列的修正参数通过比较已经知道的存储在网络分析仪的数据和根据校准标准所产生的测量数据产生了出来。在校准测试中这些就被用在数据中以补偿在前面章节讨论过的错误源。
许多因素决定着用户校准需要多久进行一次。你需要考虑的因素包括需要的测试精度,环境因素,以及DUT连接的可重复性。通常情况下,网络分析仪每几个小时或每几天需要一次用户校准,你应当根据核实的标准,测试不稳定因素来源的认定,以及个人经验来决定多久才需要进行校准。需要说明一点,本次讨论用周期校准来描述用户校准,不要与推荐的每年经过认定的工厂校准相混淆。
三个系列的校准经常用在网络分析仪的校准当中:
1.短路的,开路的,负荷的,直达的(SOLT)
2.直达的,反射的,线性的 (TRL)
3.使用外部自动化的校准模型的自动校准
由于每一个系列的校准都有很多不同的要求,需要根据DUT,测试系统,以及测试要求来决定使用哪一种方法。由于SOLT被广泛地使用,我们用它来说明一个校准系列中的变化。
SOLT要求在系统(和DUT)以及阻抗中采用短路的,开路的,负荷型的,直通的的标准。由他们的机械上的特点所决定的精准的标准数据在校准之前被载入到网络分析器中。你连接校准标准的位置(网络分析仪端口,线缆的末端,或者在测试的固定装置里面)就是测试时开始和结束的地方。这就是参考平台或者是测试平台。
进一步说明,你必须用一个可插入的连接制作一个直通的连接。举个例子,一个公口对母口的连接,或者其他不需要外部设备或转接器的连接来完成在 SOLT测试期间的直通连接。在校准期间插入任何器件以及不在校准测量中使用该器件都会导致测量错误。
如果你不能做一个直通的连接,将会被称为不可插入的。这里有几种方法可以用来处理不可插入的情况。,最简单的是使用一套相位相同的(包括在大多数的校准套包中)转接器以及每种类型的短路,开路,负载,在校准过程中使用一个转接器来完成直通的连接,而且在校准测试过程中为了DUT连接用一个合适的转接器与其交换。
其他校准在SOLT系列的校准包括响应型校准。它比较迅速,但是却没有移除在频率上的带宽损失那样精确。它只考虑了在12错误模型的正反向的情况。你可以通过放置短路,开路,负载的情况在端口一来进行一个端口的校准。这样可以节省一些时间,如果你只要进行一个端口测量的话,比如一个天线的回传损失。一个加强的一个端口校准如同一个完全的一端口校准,而且使用直通的连接来测量端口二,这在端口二没有源的T/R结构中很普遍。最终这里有按照校准规定的可以在两个端口都放置短路,开路,负载的完全双端口SOLT校准。
SOLT和TRL校准有很多变化,你可以在实际端子不存在比如探针节点或者如果DUT是在一个测试固定物中的应用中使用TRL校准。因为TRL 并不需要负载,在这些情况下他可以得到很好的实现。
自动化校准是一种比较新的途径,由于它们的速度,可重复性,简单易用很快已经获得了流行。更进一步,它们去除了大多数的人工干预,从而极大地减少了在校准期间误操作的概率。这些单元传统上包括一个电子元件,比如二极管,终端或者其他的标志物以及在EEPROM上存储的经过编码的相关的细节化的电子描述信息。当连接到了网络分析器上以后,自动校准就会被设置到不同的状态。在校准过程中这些状态被测量并和EEPROM中存储的相关状态相比较,以达到正确的修正值。
无论你采用了哪一种校准方法,随机的错误发生来源都应当予以避免,减少IF带宽,使用平均值减少噪音,提供更好的结果。当校准网络分析仪的时候,高质量的组成部分,巩固的测量实践,以及一个关于校准步骤和仪器的全面理解是同等重要的。
网络分析的基本原理工序要求
当用网络分析仪进行精确测量时,需要理解和正确执行每个步骤以便得到得到最佳结果。使用高性能的元件和全面的测量实践。考虑一台经过良好校准的并提供校正参数的网络分析仪和一台要求精确测量的高性能DUT之间 RF连接:
是否有电缆,适配器,和其它高性能的组成部分?
你是否适当地清洁了他们
是否使用了合适的转矩?
如果连接到DUT的RF的性能与规定的系统精度不相符,即使最好的网络分析仪也是没有作用的。
当使用网络分析仪时,使用工序是非常有用的。工序可以增强操作并改善结果。下面是一个使用网络分析仪的例子架构。
准备
准备网络分析仪和DUT
清洁,检查和测量所有连接器
如果使用SOLT校准,选择一种处理非插入式连接的方法
连接分析仪的电缆和适配器到分析仪上
操作
预调网络分析仪
设定源参数,包括频率,功率,速度系数和IF带宽
连接DUT,验证安装,电缆,适配器和运行
选择S-参数测量和显示格式
若可以,设定特殊的测量目标,如参考平面的扩展
观察响应
移除DUT
校准
选择适当的校准工具包或定义输入校准标准
设置IF带宽并平均以最小化校准期间的噪声
手动校正或使用自动校准
采用熟知的核查标准验证校准质量
保存仪器状态和校准
执行
连接DUT
从校准步骤中得到合适的校正参数
测量并保存DUT参数
网络分析仪在正确使用的前提下,是某些最精确的射频仪器,典型的精度为± 0.1 dB和±0.1度。它可以进行精确,可重复的RF测量。现代网络分析仪提供的配置和测量能力像他们应用范围一样广泛。选择合适的仪器,校准,功能,以及采用可靠的RF测量方法,可以最优化你的网络分析仪的结果。
上一篇:安捷伦近场电磁干扰源探测定位方案