智能手机的背光驱动选择策略
2012-05-16 来源:21IC
过去的一年是中国的手机行业发生深刻变化的一年,传统的功能手机市场急剧萎缩,而智能机和类智能机成为行业新宠,并在未来会逐渐成为市场主流。
另外,3G时代重应用,大屏幕的智能机和类智能机的走俏也顺应了这一趋势,对于视频、动漫游戏、手机阅读等应用来说,大屏幕成为必不可少的配置,从用户的使用体验来看,3.0~4.3英寸是比较适合的屏幕尺寸,这个尺寸的LCD屏一般需要5~10颗WLED来为其提供背光光源。另外手机LCD屏尺寸变大的同时,SLCD屏、AVS屏、IPS硬屏等高清高亮屏不断出现并逐渐成为智能机和类智能机的标配。分辨率的提升可以让显示的画面更细腻,而亮度的提升可以使屏幕的画面更加通透,让用户感觉屏幕的色彩表现更加出色。提高亮度通常需要增加更多的背光WLED来实现。对于3.7英寸的LCD屏来说,普通200流明的亮度可能只需要6颗WLED背光,但高亮屏需要300流明或者500流明的亮度,就需要7颗甚至8颗WLED背光。
如何为智能机和类智能机选择合适的背光驱动方案,是设计人员当前和未来需要考虑的问题。手机背光驱动芯片按架构分主要有:自适应电荷泵升压型、低压降恒流型和电感升压型等,不同的架构有各自的优缺点,本文以设计人员普遍关注的几个主要问题入手,并提出了这些问题的几种不同解决方案以及几种方案的优势对比,希望能从这些方案中帮助设计人员选择合适的背光驱动方案。
大屏幕尺寸手机背光面临的主要问题及解决方案
噪声辐射问题
手机系统是在一个狭小的空间内集成度非常高的系统,系统内各模块之间的互相干扰一直是让广大设计人员头疼的问题,也是背光驱动模块碰到的最难解决的问题。如果设计考虑不充分,背光驱动模块工作时可能会产生一些噪声辐射而干扰到射等频模块信号的灵敏度,比如会干扰手机信号的灵敏度或者影响GPS导航信号的灵敏度,干扰严重的可能会出现手机信号掉网、GPS导航系统找不到导航卫星的问题。
表1.不同类型背光驱动的噪声辐射。
这三种背光驱动类型中,低压降恒流型架构由于是线性电路,几乎不会产生噪声,自适应电荷泵型背光驱动和电感升压型背光驱动的电源、地线和输出等大功率信号的波动会通过PCB的寄生产生耦合噪声,这些耦合噪声可通过在芯片设计时芯片内部关键的大功率信号的信号沿的处理和外部的耦合电容将耦合噪声减小对系统其他模块的影响至最小。
电感升压型背光驱动的电感上产生的EMI辐射噪声是最严重的噪声辐射,而且很难通过背光驱动芯片设计时内部处理或者外围器件来减小的,手机设计人员在设计时需要将射频模块远离电感升压型背光驱动模块。部分设计人员为了减小电感的EMI辐射影响,会将电感升压型背光驱动及其外围器件包括电感都放在屏蔽罩内,这样虽然能减小EMI辐射的影响,但电感的高度会增加屏蔽罩的高度,对设计超薄智能机带来很大难度。
从噪声辐射影响的角度来看,低压降恒流型背光驱动的噪声性能最优,自适应电荷泵型背光驱动噪声性能次之,而电感升压型背光驱动的噪声性能最差,设计时需要特别注意。
占板面积、空间及成本问题
手机的PCB器件布局及面积一直是手机PCB设计的一个严峻挑战,而且这个挑战随着手机功能越丰富也越严峻。通常应对占板面积挑战的主要方法是采用集成度更高的手机芯片尽可能减少外围器件数量和选用尺寸更小的外围器件。
对于背光驱动模块来说,背光驱动芯片和外围器件的封装尺寸决定了背光驱动模块的占板面积,图1是分别是10路输出的采用电感升压型背光驱动和上海艾为的一款最新的四模分数倍电荷泵背光驱动AW9670QNR以及8路输出的低压降恒流型背光驱动AW9358QNR三种背光驱动模块的PCBlayout对比图。
图1.三种不同类型背光驱动PCBLayout面积对比。
从图1中可以看到,电感升压型背光驱动模块由于要使用电感、肖特基二极管和高耐压的MLCC电容,而这些器件的封装尺寸都相对较大,而AW9670QNR和AW9358QNR外围分别只需要4个和1个0402的MLCC电容,所以电感升压型背光驱动的PCBLayout面积要远远大于AW9670QNR和AW9358QNR的PCBLayout面积。电感升压型背光驱动模块PCBLayout面积是AW9670QNR背光驱动模块面积的2.3倍、AW9358QNR背光驱动模块面积的3.9倍!
转换效率
手机屏幕的尺寸越来越大,手机屏幕的背光功耗越来越是手机设计人员关心的一个问题。为了尽可能的延长手机的工作时间,手机设计人员会越来越关心背光驱动的转换效率。自适应电荷泵技术在持续发展,尤其是分数倍电荷泵技术的采用,使得自适应电荷泵架构的背光驱动效率越来越高。图2是上海艾为的AW9670QNR与一款同是10路输出的电感升压型背光驱动输出20mA时的效率曲线对比图。
图2.20mA输出的四模分数电荷泵与电感升压型背光驱动效率曲线对比图。
从图2中可以看到,输入电压在3.0~4.2V的手机应用场合,电感升压型背光驱动的转换效率(蓝色曲线)和AW9670QNR的转换效率(紫红色曲线)基本上接近,平均效率都接近80%.若亮度变暗,LED电流减小,四模分数倍电荷泵背光驱动的转换效率会进一步提高,而电感升压型背光驱动的转换效率却随电流变小而减小,图3是10mA输出时电感升压型背光驱动和AW9670QNR的转换效率曲线对比图,由于AW9670QNR大部分时间都是工作在高效率的1倍模式,转换效率要明显高于电感升压型背光驱动的转换效率。
总结
智能机和类智能机的兴起使大屏和高清高亮屏成为手机屏幕的主流,本文从手机设计人员普遍关心的几个问题入手,讨论了智能时代手机背光驱动面临一些问题和挑战,并对这些挑战提出了相应的应对措施和解决方案,以帮助设计人员设计出能满足性能更优、占板面积更小、可靠性更高的智能机背光驱动模块。
下一篇:用于下一代移动电话的电源管理划分
- 消息称 Arm 计划取消对高通的芯片设计许可,或扰乱智能手机 / PC 市场
- 贸泽开售针对智能手机和超小型物联网设备优化的 ROHM TLR377GYZ CMOS运算放大器
- 从智能手机到助听器:MEMS音频技术开启无限可能
- 高度集成,效率为先,南芯无线充电解决方案在联想手机中实现量产
- 智能手机“音乐播放器”高保真还原的解决方案
- 五步轻松设计出电容式触摸传感器(2):布局设计和智能手机应用实例
- 高通推出第二代骁龙4s移动平台,让全球数十亿智能手机用户能够使用5G连接
- 智能手机室内定位系统设计面临的挑战在哪?
- 2024 年 Q2 全球智能手机销量同比增长 6%,三星、苹果、小米前三
- 业界首款智能手机 2 亿像素长焦传感器,三星发布 ISOCELL HP9 等 3 款移动图像传感器产品
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样