电容知识:你了解电容器的等效串联电阻吗?
2011-02-26 来源:互联网
电容器的主要技术指标有电容量、耐压值、耐温值。除了这三个主要指标外,其他指标中较重要的就是等效串联电阻(ESR)了。有的电容器上有一条金色的带状线,上面印有一个大大的空心字母“I”,它表示该电容属于LOW ESR低损耗电容。有的电容还会标出ESR值(等效串联电阻),ESR越低,损耗越小,输出电流就越大,电容器的品质越高。
ESR是Equivalent Series Resistance的缩写,即“等效串联电阻”。理想的电容自身不会有任何能量损失,但实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗。这个损耗在外部,表现为就像一个电阻跟电容串联在一起,所以就称为“等效串联电阻”。和ESR类似的另外一个概念是ESL,也就是等效串联电感。早期的卷制电感经常有很高的ESL,容量越大的电容,ESL一般也越大。ESL经常会成为ESR的一部分,并且ESL会引起串联谐振等现象。但是相对电容量来说,ESL的比例很小,出现问题的几率很小,后来由于电容制作工艺的提高,现在已经逐渐忽略ESL,而把ESR作为除容量、耐压值、耐温值之外选用电容器的主要参考因素了。
串联等效电阻ESR的单位是毫欧(mΩ)。通常钽电容的ESR通常都在100毫欧以下,而铝电解电容则高于这个数值,有些种类电容的 ESR甚至会高达数欧姆。ESR的高低,与电容器的容量、电压、频率及温度都有关系,当额定电压固定时,容量愈大 ESR愈低。同样当容量固定时,选用高的额定电压的品种也能降低 ESR;故选用耐压高的电容确实有许多好处;低频时ESR高,高频时ESR低;高温也会造成ESR的升高。
现在电子技术正朝着低电压高电流电路的设计方向发展,供应给元器件的电压呈现越来越低的趋势,但对功率的要求却丝毫没有降低。按P=UI的公式来计算,要获得同样的功率,电压降低了,那就必须得增大电流。例如INTEL、AMD的最新款CPU,电压均小于2V,和以前3、 4V的电压相比低得多。但另一方面这些芯片由于晶体管和频率的激增,需求的功耗却是增大了许多,对电流的要求就越来越高了。例如两颗功率都是70W的CPU,前者电压是3.3V,后者电压是1.8V。那么,前者的电流I=P/U=70W/3.3V=21.2A;而后者的电流I=P/U=70W/1.8V=38.9A,将近是前者电流的两倍。在通过电容的电流越来越高的情况下,假如电容的ESR值不能保持在一个较小的范围,那么就会产生更高的纹波电压(理想的输出直流电压应该是一条水平线,而纹波电压则是水平线上的波峰和波谷),因此就促使工程师在设计时,要使用最小的ESR电容器。
ESR值与纹波电压的关系可以用公式V=R(ESR)×I表示。这个公式中的V就表示纹波电压,而R表示电容的ESR,I表示电流。可以看到,当电流增大的时候,即使在ESR保持不变的情况下,纹波电压也会成倍提高,因此采用更低ESR值的电容是势在必行的。
此外,即使是相同的纹波电压,对低电压电路的影响也要比在高电压情况下更大。例如对于3.3V的CPU而言,0.2V纹波电压所占比例较小,不足以形成很大的影响,但是对于1.8V的CPU,同样是0.2V的纹波电压,其所占的比例就足以造成数字电路的判断失误。
例如《电子报》2007年第26期17版的《由NCP1200构成的12V、1A开关电源》的文章中,对开关变压器次级二极管整流后的LCπ型滤波器中电容C6、C7的要求就是“要选用等效串联电阻小的优质电解电容,等效电阻不仅会影响转换率还会影响输出纹波电压。”
ESR是等效“串联”电阻,将两个电容串联,会使ESR值增大,而并联则会使之减小。因此在需要更低ESR的场合,而低ESR的大容量电容价格又相对昂贵的情况下,用多个ESR相对高的铝电解电容并联,形成一个低ESR的大容量电容也是一种常用的办法。很多开关电源采取的电容并联的策略,以牺牲一定的PCB空间,换来器件成本的减少。
不过一定等效串联电阻的存在也有好的方面。比如在稳压电路中,有一定ESR的电容,在负载发生瞬变的时候,会立即产生波动而引发反馈电路动作,这个快速的响应,以牺牲一定的瞬态性能为代价,获取了后续的快速调整能力,尤其是功率管的响应速度比较慢,而且在电容器的体积、容量受到严格限制的情况。这种情况多见于一些使用MOS管做调整管的三端稳压器或相似的电路中,采用太低的ESR电容器反而会降低整体的性能。
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样