检测并响应某个被测负载的自动脉冲发生器
2013-05-08 来源:与非网
这个自动脉冲发生器(图1和图2)是一种测试设备,用于检查一对待测端子的接触情况,一旦获得了正确的接触,就向它们发出一个短暂的电源脉冲。这些端子可以是一个逻辑门的输入端、电路板上的一只LED、一个变压器,或继电器线圈等。对于每天例行的实验和测试工程来说,这种脉冲是经常需要的。
设备的电源采用一只小型3.6V可充电NiCd电池。可以很容易将其装在一个胶棒管内(图3),图中给出了探头的特殊安排法,也可以采用常规的独立探头结构。电路也通过了5V电源的测试。
图1 : 这个电路可以很容易扩展到10个以上开关,而只使用MCU的两只I/O管脚,方法是将进位脚接到下一个IC的使能脚,从而级联多只CD4017计数器。
这里给出了两个版本:图1用一只NE555时基IC做单稳触发器,是最简单的方法。图2为减少元件数量,省略了NE555,代之以CD4069 CMOS六反相器,但后者的参数和制造商都与前者不同,都可能对电路产生影响。
晶体管Q1和Q2是开关管,当由CD4069和NE555驱动导通时,将+ve和-ve探头连接到3.6V电源和地。R3和R4将门G1的输入端偏置在低于开关阈值的电平,使其输出保持为高,从而使门G2的输出保持为低。C1构成的时间常数提供了某种程度的噪声抑制,并决定了测试电路应连接在两个探头之间的最小时间。100kΩ电阻与G1输入端串联,用于当探头意外地接到带电电路时,限制输入电流。
R1通过一个反偏二极管D1连接到R3和R4的结点处。它一般没有作用,除非探头未通过一个负载连接,因为与12MΩ的R3相比,R1、D1、R2和D2组成的连接串是一个高阻电路。但一旦连接了一个无源测试电路(如电阻/电感/LED),则D1和R2就与之并联了。因此,与R3并联的分支有较低的电阻,而G1的输入电压升高,以致它被看成逻辑1,从而使G1的输出端为低。
R5与C2构成一个除颤延时网络,确保探头与待测电路有牢固连接后,再发出电源脉冲。当G1的输出端为低时,电容C2开始通过R5放电。G2的逻辑输入电压在R5C2量级的时间内发生改变。
在图1中,G2输出的上升通过G3以及C3与R6构成的微分器,立即触发NE555单稳振荡器。一旦C3完成通过R6的充电,G3的输入端回到地,其输出端回到高电平,使NE555完成其时序循环,循环周期由R和C值决定。NE555的定时逻辑输出端1使Q3导通,点亮“发出脉冲”LED,并通过G4、G5和G6,使Q1和Q2导通,让电源脉冲到达待测电路。
每次接触只生成一个脉冲;拿开探头,再重新连接,就会发出一个新的脉冲。如果待测电路为感性,在脉冲结束时电感大于20mH,如果探头仍然连接着,感性返回EMF会使LED D1闪烁。
在图2中,NE555被G3以及G4、D4和RF组成的单稳振荡器所取代。R6已经变为1MΩ,而二极管D3已加到G3的输入端。电阻R将G4的输入保持为高,在静态下G4的输出将G3的输入保持为低。来自G2的上升沿产生一个低电平,通过已初始放电的电容C耦合到G4,后者的上升输出作为正反馈回到G3,即使移去探头,也可以将G3的输入保持为高。如果出现这种情况,D3成为反偏,从而防止G2的下降沿影响单稳的运行。
然后,电容C缓慢地通过电阻R放电,直到G4的输入端上升到其开关阈值以上,正反馈过程反转。脉冲的延续时间由R×C时间常数决定,大约为0.7RC~1.1RC,具体取决于G4的阈值电压,此电压可以在电源电压的0.33~0.67之间变化。作者建议R选1MΩ,C选40nF,但R也可以是可变的。D4用于确保当G3的输出回到高时,C可以快速放电。在图1和图2这两种情况下,单稳触发器的瞬时高输出使Q3导通,脉冲指示灯LED闪烁。它亦使Q1和Q2导通,为探头供电。D2用于将-ve探头与G1处的电路初级输入端隔离开来,以避免即刻的自我抑制。
上一篇:非传统IGBT系统电路保护设计
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC