利用PCI1510实现PCI板卡的热插拔测试
2013-05-27 来源:与非网
对于普通的PCI板卡,无论是总线的硬件结构还是操作系统(如Windows序列操作系统)都不支持热插拔。在批量生产PCI板卡时,必须在关机的情况下插拔PCI板卡,然后开机测试,因此测试工作十分费时费力。本文介绍利用TI公司的PCI1510制作一个PCI-to-PCI转接卡,从硬件和软件两个方面实现PCI板卡的热插拔。
1 系统总体结构
利用PCI1510制作的PCI-to-PCI转接卡的总体结构框图如图1所示。在电气原理上类似于一款PCI总线到CardBus总线的接口电路板,但在物理形式上,CardBus总线并没有使用PCMCIA插座,而是使用PCI插座。由于PCI板卡的电源要求同PCMCIA板卡的电源要求相差很大,这款PCI-to-PCI板卡的电源处理方法同一般PCMCIA接口板的电源处理方法有较大的差别。
需要说明的是,一般PCMCIA接口板卡插入PCMCIA插槽后,系统能自动识别板卡是否插入,但本文所设计的PCI-to-PCI转接板卡,由于PCI总线没有板卡插入识别信号,所以在设计时增加了一个控制开关。当控制开关断开时,表示没有待测PCI板卡插入;当有待测PCI板卡插入时,操作者合上控制开关,通知系统已有待测PCI板卡插入,此时控制逻辑电路接收此信号并按PCI1510所要求的方式给出板卡插入识别信号。
图1中的PCI-to-PCI转接卡主要由以下几个部分组成:总线转换电路,主要由PCI1510及其配置电路24C02组成;控制逻辑电路,由ATF16V8C实现,其作用是根据操作者手动给出的开关信号向PCI1510给出相应的板卡插入和拔出信号,同时给出电源开关电路的控制信号;电源开关电路,由两片IRF7404组成,根据控制逻辑电路给出的电源控制信号,分别接通或断开PCI插槽的+5V和3.3V电源(如果需要+12V电源,还要增加一片IRF7404)。
2 PCI板卡热插拔测试的硬件实现
从硬件上讲,对于图1所示的PCI-to-PCI转接卡,要实现外部PCI板卡的热插拔,必须解决两个问题:一是CardBus总线到PCI总线的转换,二是要处理好转接卡上PCI插座的电源问题。
2.1 从CardBus总线到PCI总线的转换
根据PCMCIA的设计规范[1]可知,CardBus总线类似于PCI总线,但CardBus总线是一种点对点总线,与PCI总线有较大差别。
关于二者引脚的定义可以参考PCI设计规范[2]和PC卡设计规范[1]。下面着重叙述二者引脚定义的不同点并给出相应的解决办法:
(1)CardBus总线没有IDSEL信号,而PCI总线和PCI桥芯片必须有IDSEL信号,用来支持对PCI桥芯片配置空间的读和写操作。由于CardBus总线是点对点操作,在它上面只有一个设备,因此可在本转接卡PCI插座的IDSEL引脚通过一个电阻(阻值为4.7~33)接到3.3V电源;
(2)CardBus总线没有SBO#和SDONE#信号,但一般的PCI板卡并不需要这两个信号;
(3)CardBus总线不支持64位总线扩展,这对32位总线的PCI卡不产生影响。本文所述转接卡也不支持64位总线的PCI板卡;
(4)CardBus总线没有JTAG引脚,而通常的PCI板卡并没有利用JTAG功能,因而这一点并不影响本文所述转接卡的适应性;
(5)CardBus总线有CSTSCHG引脚,这是CardBus总线的独有功能,PCI总线并不需要,因而在设计时将它悬空;
(6)CardBus总线有CAUDIO引脚,这也是CardBus总线的独有功能,PCI总线也不需要它,因而在设计时将它悬空;
(7)CardBus总线有CCLKRUN#引脚,PCI总线中没有该引脚,本文在设计中按CardBus接口设计要求将其通过330?赘电阻接地;
(8)CardBus总线只有一个INT#引脚,但对于常见的PCI板卡而言,通常只使用(或不用)一个PCI中断信号INTA#,因而这个限制对大多数PCI板卡不构成限制。
2.2 外部板卡插入的检测和控制逻辑电路的设计
PCI1510有四个控制信号:CCD1#、CCD2#、CVS1和CVS2,用来检测是否有外部板卡的插入,并判别插入板卡的类型。PCI1510是一款PCMCIA接口的接口芯片,对于PCMCIA接口而言,可以在PCMCIA插座上插入三种类型的板卡[1]:16位数据/地址总线的存储卡,32位数据/地址总线的CardBus卡和CardBay卡。由于将CardBus总线当作PCI总线使用,因而当本文所述转接卡的PCI插座上有待测PCI板卡插入时,控制逻辑电路必须给PCI1510提供一个与CardBus板卡插入相似的板卡识别信号。
根据PCI1510的数据手册[3]和PCMCIA卡设计规范[1],当PCI1510检测到CCD2#为低电平且CCD1#接CVS1、CVS2悬空时,PCI1510认为外部总线接口已经插入一个CardBus板卡;而当CCD1#、CCD2#有一个为高电平时,PCI1510认为外部总线上没有板卡插入。因而本文按如下方式设计电路:CCD1#与CVS1短接,CVS2悬空,CCD2#通过上拉电阻接至可编程逻辑芯片ATF16V8C。PCI-to-PCI转换卡逻辑电路和电源控制电路如图2所示。
在图2所示的电路中,U300和U301为电源开关芯片IRF7404,实际上它们是P沟道场效应管,其输入电源引脚分别接转接卡上的+5V和+3.3V电源,输出引脚则分别接至转接卡PCI插座上的+5V和+3.3V电源引脚。U300和U301的控制信号由可编程逻辑芯片U302(ATF16V8C)的POWER_EN#提供。
U302的输入信号为:CARD_IN、PCI1510提供的电源控制信号VCCD0和VCCD1,输出信号为CCD2#和POWER_EN#。输入输出关系式为:
CCD2#=CARD_IN;
POWER_EN#= !VCCD0+VCCD1;
在转接卡的PCI插座上没有插入PCI板卡时,CON300断开,CARD_IN为高电平,此时,CCD2#也为高电平;PCI1510给出的VCCD0、VCCD1均为高电平,POWER_EN#也为高电平,U300和U301没有电源输出,转接卡的PCI插座上也没有电源,同时插座上的信号线均处于高阻状态;在待测PCI板卡插入后,当操作者合上CON300时,CARD_IN为低电平,CCD2#也变为低电平,PCI1510检测到有板卡插入,给出VCCD0为高电平,VCCD1为低电平,在逻辑电路中,POWER_EN#为低电平,电源电路给PCI插座提供+5V和+3.3V(也可以增加电路提供+12V电源)电源,同时PCI1510激活板卡插座上的信号线,此时,待测PCI板卡开始正常工作。
当测试完毕时,操作者首先断开CON300。此时根据前面的分析可知,转接卡的PCI插座上的电源被切断,信号线处于高阻状态,这时,操作者可以在不关机的情况下拔下PCI板卡。
3 PCI板卡热插拔测试的软件实现
图1所示的 PCI-to-PCI转接卡在电气原理上类似于一款PCI-to-PCMCIA转接卡,常见的操作系统(如Windows XP, Windows 2000, Windows 98等)都支持PCMCIA板卡的热插拔,而且这些常见的操作系统都带有PCI1510的驱动程序。当本文所述PCI-to-PCI转接卡插入桌面计算机后,操作系统能自动装好转接卡的驱动程序。另外,待测PCI板卡插入转接卡的PCI插槽后,操作者合上控制开关,操作系统将检测到外部板卡的插入,并将待测PCI板卡识别成CardBus板卡,这样就可以像测试CardBus板卡一样测试PCI板卡,从而实现了PCI板卡的热插拔测试。
要使本文所述转接卡正常工作,还必须正确配置图1中E2PROM芯片,本文所述转接卡的配置如表1所示。
尽管本文所述PCI-to-PCI转接卡对待测PCI板卡存在着一些限制,即要求待测PCI板卡是32位数据/地址总线,只使用(或不用)一个PCI中断(即INTA#),并且不使用SDO#和SDONE#信号线,不使用PCI总线上的JTAG接口, 但这对于一些常见的PCI板卡而言并不是一个问题,本文所述转接卡仍然具有广泛的适应性和较高的使用价值。
参考文献
[1] PC Card Standard release 8.0,www.PCMCIA.org.2001,4.
[2] 刘显庆,刘仁普.微机总线规范.北京:机械工业出版社,1995.
[3] PCI1510 Data Manual.www.ti.com.2004,12.
下一篇:实现可靠的高性能数字电源
- PCI Express发射器一致性/调试解决方案
- 博通重磅产品发布,引领PCI-e交换机和重定时器市场
- 基于C8051F021型单片机与PCI接口实现数据采集卡的设计
- 尼得科仪器株式会社推出符合国际标准PCI PTS*1的高安全性信用卡读卡器
- Samtec技术前沿 | 多重原因促使PCIe® 6.0采用了PAM4
- 铠侠推出全新BG6系列消费级固态硬盘,引领PCIe®4.0高性价比主流
- 索斯科推出新服务器机箱专用的 PCI 机柜快锁式紧固件
- PCI Express 6.0:为下一代数据中心带来前所未有的性能
- 搭载Speedster7t FPGA器件的VectorPath加速卡获PCI-SIG认证
- 凌华科技推出集成型4轴PCI Express®脉冲运动控制卡
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC