新型开关电源技术的探析
2014-09-07 来源:互联网
开关电源一直是电子行业里非常热门的技术,虽然它并的性能并不能对我们日常生活的改变带来天翻地覆的变化,而它的发展趋势又是电子产品设计师和商家所关注的问题之一,新的产品必然会带动更多的商家订单和客户消费。根据市场开关电源的现状和发展,总结出五大设计性能关注焦点,下面一一为大家解析。
关注点之一:高频磁与同步整流技术的革新
在电源系统中我们会应用大量磁元件,高频磁元件的材料、结构和性能都不同于工频磁元件,有许多问题需要研究。而我们在性能上对高频磁元件所用磁性材料有一定的要求,其中损耗小,散热性能好是基本的要求,只有达到这样的标准才能做到产品的优化,磁性能才会优越。适用于兆赫级频率的磁性材料是用户的一大关注点,纳米结晶软磁材料也已得到开发应用。
然后在拥有了高频化技术之后,提高开关电源的效率是技术的另一难题,这就要求我们技术设计人员必须开发和应用软开关技术。而这种软开关技术的研究已经成为行业的多年来的科研热点,得到越来越多的设计者们的关注。
我们看过这样的技术,如同步整流SR技术,即以功率MOS管反接作为整流用开关二极管,代替萧特基二极管(SBD)。这个设计可降低管压降,从而提高电路效率。这就是我们在对于低电压、大电流输出的软开关变换器,我们想方设法降低开关的通态损耗,进一步提高其效率的措施。
关注点之二:开关电源的功率密度的改进
提高开关电源的功率密度,使之小型化、轻量化,是设计者的关注之一。电源的小型化、减轻重量对便携式电子设备(如移动电话,数字相机等)尤为重要,设计者们将通过三种方案来做到降低开关电源的功率密度。
第一种方案是实现高频化。为了实现电源高功率密度,必须提高PWM变换器的工作频率、从而减小电路中储能元件的体积重量。
第二种方案是采用新型电容器。减小电力电子设备的体积和重量,必须设法改进电容器的性能,提高能量密度,并研究开发适合于电力电子及电源系统用的新型电容器,要求电容量大、等效串联电阻ESR小、体积小,做到新型电容器的体积缩小作用。
第三种方案是应用压电变压器的改进。应用压电变压器可使高频功率变换器实现轻、小、薄和高功率密度。压电变压器利用压电陶瓷材料特有的“电压-振动”变换和“振动-电压”变换的性质传送能量,其等效电路如同一个串并联谐振电路,进行应用压电变压器的改进。
关注点之三:功率半导体器件性能
早在上世纪末,Infineon公司推出了冷mos管,它采用“超级结”(Super-Junction)结构,又称超结功率MOSFET。工作电压在600V~800V,通态电阻几乎降低了一个数量级,仍保持开关速度快的特点,是一种有发展前途的高频功率半导体电子器件。
就在这种很有前途的高频功率半导体电子器件IGBT刚出现时,电压、电流额定值只有600V、25A。很长一段时间内,耐压水平限于1200V~1700V,经过长时间的探索研究和改进,现在IGBT的电压、电流额定值已分别达到3300V/1200A和4500V/1800A,高压IGBT单片耐压已达到6500V,一般IGBT的工作频率上限为20kHz~40kHz,基于穿通(PT)型结构应用新技术制造的IGBT,可工作于150kHz(硬开关)和300kHz(软开关),大大提高了应用性能。
我们看到的IGBT技术进展实际上是通态压降,快速开关和高耐压能力三者的折中。随着工艺和结构形式的不同,IGBT在20年历史发展进程中,分别是穿通(PT)型、非穿通(NPT)型、软穿通(SPT)型、沟漕型和电场截止(FS)型。
碳化硅SiC是功率半导体器件晶片的理想材料,其优点是:禁带宽、工作温度高(可达600℃)、热稳定性好、通态电阻小、导热性能好、漏电流极小、PN结耐压高等,有利于制造出耐高温的高频大功率半导体电子元器件。由此我们不难看出碳化硅将是21世纪最可能成功应用的新型功率半导体器件材料,它的出现将大大改进我们原有的产品设计性能。
关注点之四:分布电源结构
在说到分布电源结构之前我们先说一下分布电源系统, 现在分布电源系统有两种结构类型有两级结构和三级结构两种类型。分布电源系统适合于用作超高速集成电路组成的大型工作站(如图像处理站)、大型数字电子交换系统等的电源,它有着可实现DC/DC变换器组件模块化、容易实现N+1功率冗余、易于扩增负载容量、可降低48V母线上的电流和电压降、容易做到热分布均匀、便于散热设计、瞬态响应好,可在线更换失效模块等优点。
关注点之五:PFC变换器
由于AC/DC变换电路的输入端有整流元件和滤波电容,在正弦电压输入时,单相整流电源供电的电子设备,电网侧(交流输入端)功率因数仅为0.6~0.65。采用PFC(功率因数校正)变换器,网侧功率因数可提高到0.95~0.99,输入电流THD小于10%。既治理了电网的谐波污染,又提高了电源的整体效率。这一技术称为有源功率因数校正APFC单相APFC国内外开发较早,技术已较成熟;三相APFC的拓扑类型和控制策略虽然已经有很多种,但还有待继续研究发展。
一般高功率因数AC/DC开关电源,由两级拓扑组成,对于小功率AC/DC开关电源来说,采用两级拓扑结构总体效率低、成本高。
如果对输入端功率因数要求不特别高时,将PFC变换器和后级DC/DC变换器组合成一个拓扑,构成单级高功率因数AC/DC开关电源,只用一个主开关管,可使功率因数校正到0.8以上,并使输出直流电压可调,调整后的直流电压就促进了PFC变换器的应用性能,最终实现总体的效率提高,成本降低。
上一篇:电源技术中电容器的正确选用
下一篇:基于反激式电源中的噪声来源及修复
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC