笔记本供电无障碍Boost升压电路设计详解
2014-11-22 来源:互联网
Boost拓扑结构一直是几款既经典又基本的基础电路之一,它被运用在非常多的供电设备中。本文中讲解了学习、拆解、重组的Boost模块都是运用了UC3843的控制芯片,这款芯片是专门为设计低压电路所准备的。在以下的讲解过程中,针对Boost升压电路设计及计算过程做出了详细的讲解。
下图为2块boost模块,第一步就是得到两个模块的电路图,最直接的方法就是用万用表一根根的测量,类似“抄板”工作,但适用于初学者。
图1 两块成品升压模块
上图的模块主电路基本一致,都是典型Boost升压电路,它们使用MOSFET作为开关器件;控制芯片也一致为UC3843,是电流型PWM控制芯片,经过插接它们的芯片外围电路和参数略有不同。网上对UC3843系列芯片使用讲述得并不透彻,要想了解的更透彻惟有学习其官方文件,但UC3843的PDF版本也很多,能够找到的最好版本是UC3843(Rev. 15),另外一个UC3843A作为补充。
图2 UC3843系统图
首先,设置PWM最大占空比和频率。PWM脉冲由RT和CT谐振产生,设计RT和CT参数时,先设计最大占空比确定RT,再通过频率确定CT的数值。PDF中讲述了,PWM波形的最大占空比仅由RT函数确定,为了保护电路可以通过限制最大占空比来实现,(比如Boost电路中设置最大占空比为50%,那么输出电压最大值就不可能超过输入电压的50%)公式如下所示:
公式中已知量VRT/CT(valley)= 1.2V,VRT/CT(peak)= 2.8V,Vref= 5V,Idischg= 8.3mA,RT为谐振电阻。以Boost电路为例,为防止输出电压过高,我要求Dmax<70%,于是电阻就选择了比较常见的RT=1KΩ,Dmax=64.2%。
表1 RT与Dmax关系表
选择电阻后再根据PDF文件中提供的频率图选择电阻,比如希望PWM适当高些大于50KHz,可以减小电感量,那么找到0.8上的第二根水平线与50K竖直线的交叉处,估算到CT应该大于10nF,估计在15nF以上,看看自己的贴片电容情况,挑选比较接近的22nF的电容,CT=22nF。
图3 频率设置曲线图估算完毕后,可以依据公式核算(PDF上有说明的计算一般都有10%的误差,原因是电阻和电容的标称值都有1%~5%的误差以及温度影响)。
计算值53.4KHz,实际值53.7KHz,比较准确了。
然后,进行电压反馈环节设计。就采用最基本的方案,2脚电压反馈输入,1脚电压反馈补偿输入,如图4所示。
图4 电压反馈环节设计
2脚的参考电压是2.5V,Rf要求大于8.8K,频率不是特别高,反馈也不是要求响应特别快,因此选用大家用得多的参数Rf=100K,Cf=100pF。调节Ri和Rd的数值,就可以调节输出电压了,计算公式是:
VO=2.5*(Rd+Ri)/Rd
最后,进行电流反馈环节设计。
图5 电流反馈环节设计
3脚是电流反馈输入,参考电压值是1V(超过1V时响应,减小PWM占空比)限流靠设计RS的值,设计时由于没有合适的电阻(要同时考虑阻值和功率),只能将就选择0.05Ω/2W的电阻串上一个保险丝来代替(估计在平均电流小时应该有0.07欧左右,平均电流大时应该有0.15欧电阻,这样可以限制电流6.5A以内)。R的值比较随意,一般就是常见的1K和10K都行,但是C的值就不能太大了,不然电流反馈的延时就太大了,很容易造成过流时间太长PWM芯片才有响应的问题,而选择太小了就容易受到尖峰的干扰,选择电阻1K,电容200pF,在54KHz的频率下对电流限制还不错。
关于主电路参数设计
图6 Boost电路结构
基本结构如图6所示,主电路参数设置如下:
1、Vin工作电压 12~18V
2、Vout工作电压 20.5V
3、电感 100mH,6A工作电路
在设计参数时,最重要的是开关频率和电感平均电流,给大家一个用Matlab-simulink搭建的简易开环Boost模型,可以自己设置参数波形是否合理。以上使用的模型是开环的,启动时冲击电流很大,可以不管,因为UC3843中电流反馈可以实现软起动,只要注意看稳态时电感上的平均电流就可以了,电感电流选择上最好留50%的余量。电路原理图如下:
图7 基于UC3843的Boost升压电路原理图
解释:
1、R7、R10、R9构成输出电压反馈环节,调节R10就能改变输出电压了。这里电阻R9设置为7K是为了防止电压升得太高,如果需要的电压较高就的适当减少R9。
Vmax=2.5*(7K+51K)/7K=20.7 V
Vmin=2.5*(10K+7K+51K)/(10K+7K)=10 V
2、电阻R4,保护MOSFET,防止源极开路。
3、二极管D2一定要用低导通压降的肖特基二极管,最好能装散热片的。
4、输入输出两端的支撑电容当然越大越好,不过当参数下到1000uF时,输出已经非常好了,特别提醒:电容是有耐压值的,如果要输出30V,却用25V耐用电容,通电时间稍微长点就会爆电容。
图8 实物展示
经过模仿研究及再实践可以看出UC3843是一款不错的PWM芯片,有两个反馈环,电压环精确稳压,电流反馈可以限流保护,比单独用单片机成本低,可靠性高,同时不占用单片机资源。使用的基本是UC3843最精简的外围结构,适合初学者入手制作。如果后续配上高频变压器,使用的方式就更加丰富了。市面上还有款芯片TL494可以代替UC3843,功能差不多。
- 英特尔携50家伙伴,搭载酷睿Ultra (第二代)的30款笔记本和台式机AI PC全家桶亮相
- 惠普、戴尔、苹果笔记本市占率新低 华为、小米等国产崛起
- 笔记本电脑内存条芯片加固保护用底部填充胶方案
- 智能控制的笔记本外置散热器
- 高信噪比麦克风正在将笔记本电脑变成全方位通信中心
- 笔记本硬盘怎么拆
- LG Display 宣布业界率先量产串联 OLED 笔记本显示屏:寿命翻倍、厚度减少四成
- 一分钟内为笔记本电脑充满电,新发现或带来真正的超级电容
- 思特威推出笔记本电脑与平板应用系列5MP及2MP图像传感器
- 消息称苹果 3 月将推出新款 MacBook Air 笔记本:外观不变、升至 M3 芯片
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC