Linux驱动之按键驱动编写(中断方式)
2024-08-20 来源:elecfans
1、查看原理图,确定需要控制的IO端口
打开原理图,确定需要控制的IO端口为GPF0、GPF2、GPG3、GPG11。可以看到它的中断号为IRQ_EINT0、IRQ_EINT2、IRQ_EINT11、IRQ_EINT19
2、查看芯片手册,确定IO端口的寄存器地址,可以看到因为用了两组GPIO端口,所以它的基地址分别为0x56000050、0x56000060。中断方式的寄存器基地址为0x56000088、0x5600008c、0x56000090
1)、编写出口、入口函数。代码如下,具体说明参考Linux驱动之LED驱动编写
static int second_drv_init(void)
{
Secondmajor = register_chrdev(0, 'buttons', &second_drv_ops);//注册驱动程序
if(Secondmajor < 0)
printk('failes 1 buttons_drv registern');
second_drv_class = class_create(THIS_MODULE, 'buttons');//创建类
if(second_drv_class < 0)
printk('failes 2 buttons_drv registern');
second_drv_class_dev = class_device_create(second_drv_class, NULL, MKDEV(Secondmajor,0), NULL,'buttons');//创建设备节点
if(second_drv_class_dev < 0)
printk('failes 3 buttons_drv registern');
gpfcon = ioremap(0x56000050, 16);//重映射
gpfdat = gpfcon + 1;
gpgcon = ioremap(0x56000060, 16);//重映射
gpgdat = gpgcon + 1;
printk('register buttons_drvn');
return 0;
}
static void second_drv_exit(void)
{
unregister_chrdev(Secondmajor,'buttons');
class_device_unregister(second_drv_class_dev);
class_destroy(second_drv_class);
iounmap(gpfcon);
iounmap(gpgcon);
printk('unregister buttons_drvn');
}
module_init(second_drv_init);
module_exit(second_drv_exit);
2)、 添加file_operations 结构体,这个是字符设备驱动的核心结构,所有的应用层调用的函数最终都会调用这个结构下面定义的函数
static struct file_operations third_drv_ops =
{
.owner = THIS_MODULE,
.open = third_drv_open,
.read = third_drv_read,
.release = third_drv_close,//增加关闭函数
};
3)、分别编写file_operations 结构体下的open、read、release 函数。其中open函数主要将相应的IO端口配置成中断功能,并且向内核注册中断;read函数主要是在按键引脚电平未改变时休眠,然后按键引脚电平改变后,将按键值传给应用程序处理。(按键值的处理在中断处理程序中);relase函数的功能主要是从内核释放掉open函数注册的中断。程序如下:
static int third_drv_open (struct inode * inode, struct file * file)
{
int ret;
ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, 's1', (void * )&pins_desc[0]);//注册一个外部中断S1,双边沿触发,dev_id为&pins_desc[0]
if(ret)
{
printk('open failed 1n');
return -1;
}
ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, 's2', (void * )& pins_desc[1]);//注册一个外部中断S2,双边沿触发,dev_id为&pins_desc[1]
if(ret)
{
printk('open failed 2n');
return -1;
}
ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, 's3', (void * )&pins_desc[2]);//注册一个外部中断S3,双边沿触发,dev_id为&pins_desc[2]
if(ret)
{
printk('open failed 3n');
return -1;
}
ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, 's4', (void * )&pins_desc[3]);//注册一个外部中断S4,双边沿触发,dev_id为&pins_desc[3]
if(ret)
{
printk('open failed 4n');
return -1;
}
return 0;
}
static int third_drv_close(struct inode * inode, struct file * file)
{
free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);//释放中断,根据IRQ_EINT0找到irq_desc结构。根据pins_desc[0]找到irq_desc->action结构
free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);//释放中断,根据IRQ_EINT2找到irq_desc结构。根据pins_desc[2]找到irq_desc->action结构
free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);//释放中断,根据IRQ_EINT11找到irq_desc结构。根据pins_desc[3]找到irq_desc->action结构
free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);//释放中断,根据IRQ_EINT19找到irq_desc结构。根据pins_desc[4]找到irq_desc->action结构
return 0;
}
static ssize_t third_drv_read(struct file * file, char __user * userbuf, size_t count, loff_t * off)
{
int ret;
if(count != 1)
{
printk('read errorn');
return -1;
}
wait_event_interruptible(button_waitq, ev_press);//将当前进程放入等待队列button_waitq中,并且释放CPU进入睡眠状态
ret = copy_to_user(userbuf, &key_val, 1);//将取得的按键值传给上层应用
ev_press = 0;//按键已经处理可以继续睡眠
if(ret)
{
printk('copy errorn');
return -1;
}
return 1;
}
4)、中断处理函数的编写,中断处理函数利用注册中断时传入的dev_id这个值来判断是哪个按键发生了中断,dev_iq被赋值为pin_desc结构,如下:
struct pin_desc
{
unsigned int pin; //是哪个按键
unsigned int key_val; //按键的按键值
};
static struct pin_desc pins_desc[4] =
{
{S3C2410_GPF0,0x01},
{S3C2410_GPF2,0x02},
{S3C2410_GPG3,0x03},
{S3C2410_GPG11,0x04}
};
取得哪个引脚发生的中断信息后,取得相应的引脚电平,然后确定按键值。接着将值传给key_val,再唤醒调用read的进程,将值直接拷贝给应用程序。具体函数如下
static unsigned int key_val;//全局变量
/*
*0x01、0x02、0x03、0x04表示按键被按下
*/
/*
*0x81、0x82、0x83、0x84表示按键被松开
*/
/*
*利用dev_id的值为pins_desc来判断是哪一个按键被按下或松开
*/
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
unsigned int pin_val;
struct pin_desc * pin_desc = (struct pin_desc *)dev_id;//取得哪个按键被按下的状态,dev_id是action->dev_id,即在注册中断时传入的&pin_desc[num]
pin_val = s3c2410_gpio_getpin(pin_desc->pin); //取得按键对应的IO口的电平状态
if(pin_val) //按键松开
key_val = 0x80 | pin_desc->key_val;
else
key_val = pin_desc->key_val;
wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程,即调用read函数的进程 */
ev_press = 1;
return IRQ_HANDLED;
}
5)、整体代码
#include #include #include #include #include #include #include #include #include #include #include //#include static struct class *third_drv_class;//类 static struct class_device *third_drv_class_dev;//类下面的设备 static int thirdmajor; static unsigned long *gpfcon = NULL; static unsigned long *gpfdat = NULL; static unsigned long *gpgcon = NULL; static unsigned long *gpgdat = NULL; struct pin_desc { unsigned int pin; //是哪个按键 unsigned int key_val; //按键的按键值 }; static struct pin_desc pins_desc[4] = { {S3C2410_GPF0,0x01}, {S3C2410_GPF2,0x02}, {S3C2410_GPG3,0x03}, {S3C2410_GPG11,0x04} }; unsigned int ev_press; DECLARE_WAIT_QUEUE_HEAD(button_waitq);//注册一个等待队列button_waitq static unsigned int key_val;//全局变量 /* *0x01、0x02、0x03、0x04表示按键被按下 */ /* *0x81、0x82、0x83、0x84表示按键被松开 */ /* *利用dev_id的值为pins_desc来判断是哪一个按键被按下或松开 */ static irqreturn_t buttons_irq(int irq, void *dev_id) { unsigned int pin_val; struct pin_desc * pin_desc = (struct pin_desc *)dev_id;//取得哪个按键被按下的状态,dev_id是action->dev_id,即在注册中断时传入的&pin_desc[num] pin_val = s3c2410_gpio_getpin(pin_desc->pin); //取得按键对应的IO口的电平状态 if(pin_val) //按键松开 key_val = 0x80 | pin_desc->key_val; else key_val = pin_desc->key_val; wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程,即调用read函数的进程 */ ev_press = 1; return IRQ_HANDLED; } static int third_drv_open (struct inode * inode, struct file * file) { int ret; ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, 's1', (void * )&pins_desc[0]);//注册一个外部中断S1,双边沿触发,dev_id为&pins_desc[0] if(ret) { printk('open failed 1n'); return -1; } ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, 's2', (void * )& pins_desc[1]);//注册一个外部中断S2,双边沿触发,dev_id为&pins_desc[1] if(ret) { printk('open failed 2n'); return -1; } ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, 's3', (void * )&pins_desc[2]);//注册一个外部中断S3,双边沿触发,dev_id为&pins_desc[2] if(ret) { printk('open failed 3n'); return -1; } ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, 's4', (void * )&pins_desc[3]);//注册一个外部中断S4,双边沿触发,dev_id为&pins_desc[3] if(ret) { printk('open failed 4n'); return -1; } return 0; } static int third_drv_close(struct inode * inode, struct file * file) { free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);//释放中断,根据IRQ_EINT0找到irq_desc结构。根据pins_desc[0]找到irq_desc->action结构 free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);//释放中断,根据IRQ_EINT2找到irq_desc结构。根据pins_desc[2]找到irq_desc->action结构 free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);//释放中断,根据IRQ_EINT11找到irq_desc结构。根据pins_desc[3]找到irq_desc->action结构 free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);//释放中断,根据IRQ_EINT19找到irq_desc结构。根据pins_desc[4]找到irq_desc->action结构 return 0; } static ssize_t third_drv_read(struct file * file, char __user * userbuf, size_t count, loff_t * off) { int ret; if(count != 1) { printk('read errorn'); return -1; } wait_event_interruptible(button_waitq, ev_press);//将当前进程放入等待队列button_waitq中,并且释放CPU进入睡眠状态 ret = copy_to_user(userbuf, &key_val, 1);//将取得的按键值传给上层应用 ev_press = 0;//按键已经处理可以继续睡眠 if(ret) { printk('copy errorn'); return -1; } return 1; } static struct file_operations third_drv_ops = { .owner = THIS_MODULE, .open = third_drv_open, .read = third_drv_read, .release = third_drv_close,//增加关闭函数 }; static int third_drv_init(void) { thirdmajor = register_chrdev(0, 'buttons', &third_drv_ops);//注册驱动程序 if(thirdmajor < 0) printk('failes 1 buttons_drv registern'); third_drv_class = class_create(THIS_MODULE, 'buttons');//创建类 if(third_drv_class < 0) printk('failes 2 buttons_drv registern'); third_drv_class_dev = class_device_create(third_drv_class, NULL, MKDEV(thirdmajor,0), NULL,'buttons');//创建设备节点 if(third_drv_class_dev < 0) printk('failes 3 buttons_drv registern'); gpfcon = ioremap(0x56000050, 16);//重映射 gpfdat = gpfcon + 1; gpgcon = ioremap(0x56000060, 16);//重映射 gpgdat = gpgcon + 1; printk('register buttons_drvn'); return 0; } static void third_drv_exit(void) { unregister_chrdev(thirdmajor,'buttons'); class_device_unregister(third_drv_class_dev); class_destroy(third_drv_class); iounmap(gpfcon); iounmap(gpgcon); printk('unregister buttons_drvn'); } module_init(third_drv_init); module_exit(third_drv_exit); MODULE_LICENSE('GPL'); 4、确定应用程序功能,编写测试代码。 测试程序实现四个按键中有一个按键按下时,打印出这个按键的按键值。./third_test。直接看代码 #include #include #include #include /* *usage ./buttonstest */ int main(int argc, char **argv) { int fd; char* filename='dev/buttons'; unsigned char key_val; unsigned long cnt=0; fd = open(filename, O_RDWR);//打开dev/firstdrv设备文件 if (fd < 0)//小于0说明没有成功 { printf('error, can't open %sn', filename); return 0; } if(argc !=1) { printf('Usage : %s ',argv[0]); return 0; } while(1) { read(fd, &key_val, 1); printf('key_val: %xn',key_val); } return 0; } 5、编写Makefile,编译驱动代码与测试代码,在开发板上运行 Makefile源码如下: KERN_DIR = /work/system/linux-2.6.22.6 all: make -C $(KERN_DIR) M=`pwd` modules //M='pwd'表示当前目录。这句话的意思是利用内核目录下的Makefile规则来编译当前目录下的模块 clean: make -C $(KERN_DIR) M=`pwd` modules clean rm -rf modules.order obj-m +=third_drv.o//调用内核目录下Makefile编译时需要用到这个参数 1)、然后在当前目录下make后编译出third_drv.ko文件 2)、arm-linux-gcc -o third_test third_test.c编译出third_test测试程序 3)、cp third_drv.ko third_test /work/nfs_root将编译出来的文件拷贝到开发板挂接的网络文件系统上 4)、执行insmod third_drv.ko加载驱动。 5)、./third_test测试程序,按下按键,成功打印按键值,用top命令查看应用程序发现third_test程序占用了0%的CPU资源,驱动程序相比查询方式的驱动改善了。