ESP8266纯串口透传,助力设备上云端
2024-02-20 来源:elecfans
项目有些久远,前年的机器人上需要的功能,当时是需要将STM32上的数据上传到服务器,比如机器人的速度,行驶距离,是否在拍照等等。便于管理者在PC或者手机上了解机器人的工作状态,同时可以远程下发指令给机器人,控制其完成相应动作。 因为所有的逻辑判断和控制都在服务器或者STM32上面,作为中间的无线模块仅仅需要上传STM32的数据并接收服务器下发的指令即可,所以这里对WiFi模块的要求不高,仅仅需要它作为透传功能即可。当时在选型的时候试过好几款WiFi模块,最终敲定了安信可的ESP8266,价格便宜,开发简单,但是搭建环境是真的不容易,深受其害。 选择好模块就该考虑使用AT指令还是使用SDK开发,AT指令固然简单,但是局限性非常大。如果使用AT指令,我那开发控制端的同事估计就要跳脚了,代码里需要写一大堆的AT指令,如果功能改变,指令代码就需要重写,烦不胜烦。 如果使用SDK开发,控制端只需发送简单的数据就行,完全不用考虑其他任何东西,ESP8266完全当做一个中转站,相对应的我的工作就会繁重,但是,我屈服了,选择使用SDK。 于是就有了下面基于NONOS 2.0的ESP8266串口透传。主要有以下几个功能:
纯串口透传,接收MCU串口数据,直接通过MQTT上传到服务器,接收服务器数据下发给MCU。
smartconfig+airkiss配网,随意使用,场景丰富。
最多储存5个WIFI账号和密码,自动寻找网络连接。
按键配网,长按重新配网,前一次WiFi自动储存,添加配网指示灯。
OTA空中升级(待验证)
从程序的入口开始:
//程序入口
void ICACHE_FLASH_ATTR user_init(void)
{
uart_init(115200, 115200);
os_delay_us(60000);
keyInit();
set_uart_cb(uart_cb);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, FUNC_GPIO12); //GPIO12初始化
GPIO_OUTPUT_SET(GPIO_ID_PIN(12), 0);//低电平
get_mac();//获取MAC地址
wifi_set_opmode(STATION_MODE);
//设置wifi信息存储数量,最大为5个
wifi_station_ap_number_set(2);
mqtt_init();
set_wifistate_cb(wifi_connect_cb, wifi_disconnect_cb);
}
程序的入口先进行串口初始化和按键的初始化,以及LED的初始化。串口要初始化波特率,按键初始化配网按键,用于短按配网,长按重新配网,LED只要用于判断模块是否进入配网模式以及是否配网完成。
初始化完成后会首先读取MAC地址,该地址是唯一的,每个模块都不一样,用于填充进主题中,便于服务器区分不同设备,用于多台量产设备的使用,在连接MQTT服务器时会自动填充。
每连接一次WiFi都会将WiFi信息保存在模块内部,每次上电都会自动扫描暴露的WiFi,直接连接,就像手机的WIFI连接,目前最大支持五个WiFi信息的保存,超过5个会剔除最早的WiFi信息,通过短按D5(GPIO14)可进入配网模式。
/**
* 按键短按回调
*/
LOCAL void ICACHE_FLASH_ATTR key1ShortPress(void) {
start_smartconfig(smartconfig_cd);
INFO('start_smartconfig
');
}
/**
* 按键长按回调
*/
LOCAL void ICACHE_FLASH_ATTR key1LongPress(void) {
start_smartconfig(smartconfig_cd);
INFO('start_smartconfig
');
}
/**
* 按键初始化
*/
LOCAL void ICACHE_FLASH_ATTR keyInit(void) {
//设置按键数量
set_key_num(1);
//长按、短按的按键回调
key_add(D5, NULL, key1ShortPress);
key_add(D5, NULL, key1LongPress);
}
由于找不到最新的代码。这里的长按我没做处理,应该是断开WiFi重新进入配网模式, 或者软复位模块,再进入start_smartconfig()函数:
/**
* 开始Smartconfig配置
* @param cd: Smartconfig状态回调
* @retval None
*/
void ICACHE_FLASH_ATTR start_smartconfig(smartconfig_cd_t cd) {
smartconfig_flag = 1;
smartconfig_set_type(SC_TYPE_ESPTOUCH_AIRKISS); //SC_TYPE_ESPTOUCH,SC_TYPE_AIRKISS,SC_TYPE_ESPTOUCH_AIRKISS
wifi_station_disconnect();
wifi_set_opmode(STATION_MODE);
finish_cd = cd;
smartconfig_start(smartconfig_done);
os_timer_disarm(&OS_Timer_Wifichange); // 关闭定时器
if(connect_flag == 1){
w_disconnect();
connect_flag = 0;
}
os_timer_disarm(&OS_Timer_SM); // 关闭定时器
os_timer_setfn(&OS_Timer_SM, (os_timer_func_t *) sm_wait_time, NULL);// 设置定时器
os_timer_arm(&OS_Timer_SM, 1000, 1); // 使能定时器
}
smartconfig_set_type();函数可选3个参数:分别是:SC_TYPE_ESPTOUCH、SC_TYPE_AIRKISS和SC_TYPE_ESPTOUCH_AIRKISS
第一个是smartconfig配网(手机APP),第二个是airkiss配网(微信公众号),最后一个两者都可以。进入该函数会调用smartconfig_start();,该函数会调用smartconfig_done()函数进行配网,配网成功后会点亮LED灯。
/**
* Smartconfig 状态处理
* @param status: 状态
* @param *pdata: AP数据
* @retval None
*/
void ICACHE_FLASH_ATTR
smartconfig_done(sc_status status, void *pdata) {
switch (status) {
case SC_STATUS_WAIT:
INFO('SC_STATUS_WAIT
');
break;
case SC_STATUS_FIND_CHANNEL:
INFO('SC_STATUS_FIND_CHANNEL
');
break;
case SC_STATUS_GETTING_SSID_PSWD:
INFO('SC_STATUS_GETTING_SSID_PSWD
');
sc_type *type = pdata;
if (*type == SC_TYPE_ESPTOUCH) {
INFO('SC_TYPE:SC_TYPE_ESPTOUCH
');
} else {
INFO('SC_TYPE:SC_TYPE_AIRKISS
');
}
break;
case SC_STATUS_LINK:
INFO('SC_STATUS_LINK
');
sm_comfig_status = SM_STATUS_GETINFO;
struct station_config *sta_conf = pdata;
wifi_station_set_config(sta_conf);
wifi_station_disconnect();
wifi_station_connect();
break;
case SC_STATUS_LINK_OVER:
sm_comfig_status = SM_STATUS_FINISH;
INFO('SC_STATUS_LINK_OVER
');
if (pdata != NULL) {
//SC_TYPE_ESPTOUCH
uint8 phone_ip[4] = { 0 };
os_memcpy(phone_ip, (uint8*) pdata, 4);
INFO('Phone ip: %d.%d.%d.%d
', phone_ip[0], phone_ip[1],
phone_ip[2], phone_ip[3]);
} else {
//SC_TYPE_AIRKISS - support airkiss v2.0
airkiss_start_discover();
}
smartconfig_stop();
smartconfig_flag = 0;
connect_flag = 0;
os_timer_disarm(&OS_Timer_SM); // 关闭定时器
finish_cd(sm_comfig_status);
os_timer_arm(&OS_Timer_Wifichange, 3000, 1); // 使能定时器
break;
}
}
/**
* WIFI连接回调
*/
void wifi_connect_cb(void){
INFO('wifi connect!
');
os_printf('----- WiFi连接成功,打开绿灯---
');
GPIO_OUTPUT_SET(GPIO_ID_PIN(12), 1);
MQTT_Connect(&mqttClient);
}
/**
* WIFI断开回调
*/
void wifi_disconnect_cb(void){
INFO('wifi disconnect!
');
os_printf('----- WiFi断开,关闭绿灯---
');
GPIO_OUTPUT_SET(GPIO_ID_PIN(12), 0);
MQTT_Disconnect(&mqttClient);
}
连接MQTT服务器:
网络连接成功以后可以开始MQTT的初始化,初始化包涵一系列的连接初始化回调,连接成功或不成功回调,主题订阅发布回调等等。
/**
* MQTT初始化
*/
void ICACHE_FLASH_ATTR mqtt_init(void) {
MQTT_InitConnection(&mqttClient, MQTT_HOST, MQTT_PORT, DEFAULT_SECURITY);
MQTT_InitClient(&mqttClient, mac_str, MQTT_USER,MQTT_PASS, MQTT_KEEPALIVE, 1);
MQTT_InitLWT(&mqttClient, lwt_topic, LWT_MESSAGE, 0, 0);
MQTT_OnConnected(&mqttClient, mqttConnectedCb);
MQTT_OnDisconnected(&mqttClient, mqttDisconnectedCb);
MQTT_OnPublished(&mqttClient, mqttPublishedCb);
MQTT_OnData(&mqttClient, mqttDataCb);
}
void ICACHE_FLASH_ATTR
MQTT_InitConnection(MQTT_Client *mqttClient, uint8_t* host, uint32_t port, uint8_t security)
{
uint32_t temp;
INFO('MQTT_InitConnection
');
os_memset(mqttClient, 0, sizeof(MQTT_Client));
temp = os_strlen(host);
mqttClient->host = (uint8_t*)os_zalloc(temp + 1);
os_strcpy(mqttClient->host, host);
mqttClient->host[temp] = 0;
mqttClient->port = port;
mqttClient->security = security;
}
void ICACHE_FLASH_ATTR
MQTT_InitClient(MQTT_Client *mqttClient, uint8_t* client_id, uint8_t* client_user, uint8_t* client_pass, uint32_t keepAliveTime, uint8_t cleanSession)
{
uint32_t temp;
INFO('MQTT_InitClient
');
os_printf('CD MQTT_InitClient++++++++++++++++++++++
');
os_memset(&mqttClient->connect_info, 0, sizeof(mqtt_connect_info_t));
temp = os_strlen(client_id);
mqttClient->connect_info.client_id = (uint8_t*)os_zalloc(temp + 1);
os_strcpy(mqttClient->connect_info.client_id, client_id);
mqttClient->connect_info.client_id[temp] = 0;
if (client_user)
{
temp = os_strlen(client_user);
mqttClient->connect_info.username = (uint8_t*)os_zalloc(temp + 1);
os_strcpy(mqttClient->connect_info.username, client_user);
mqttClient->connect_info.username[temp] = 0;
}
if (client_pass)
{
temp = os_strlen(client_pass);
mqttClient->connect_info.password = (uint8_t*)os_zalloc(temp + 1);
os_strcpy(mqttClient->connect_info.password, client_pass);
mqttClient->connect_info.password[temp] = 0;
}
mqttClient->connect_info.keepalive = keepAliveTime;
mqttClient->connect_info.clean_session = cleanSession;
mqttClient->mqtt_state.in_buffer = (uint8_t *)os_zalloc(MQTT_BUF_SIZE);
mqttClient->mqtt_state.in_buffer_length = MQTT_BUF_SIZE;
mqttClient->mqtt_state.out_buffer = (uint8_t *)os_zalloc(MQTT_BUF_SIZE);
mqttClient->mqtt_state.out_buffer_length = MQTT_BUF_SIZE;
mqttClient->mqtt_state.connect_info = &mqttClient->connect_info;
mqtt_msg_init(&mqttClient->mqtt_state.mqtt_connection, mqttClient->mqtt_state.out_buffer, mqttClient->mqtt_state.out_buffer_length);
QUEUE_Init(&mqttClient->msgQueue, QUEUE_BUFFER_SIZE);
system_os_task(MQTT_Task, MQTT_TASK_PRIO, mqtt_procTaskQueue, MQTT_TASK_QUEUE_SIZE);
system_os_post(MQTT_TASK_PRIO, 0, (os_param_t)mqttClient);
}
WiFi连接成功和失败会触发不同的回调函数:
/**
* MQTT连接回调
*/
void mqttConnectedCb(uint32_t *args) {
MQTT_Client* client = (MQTT_Client*) args;
INFO('MQTT: Connected
');
MQTT_Publish(client, birth_topic, BIRTH_MESSAGE, os_strlen(BIRTH_MESSAGE), 0,0);
MQTT_Subscribe(client,ota_topic, 0);
if(updata_status_check()){
MQTT_Publish(client, ota_topic, 'updata_finish', os_strlen('updata_finish'), 0,0);
}
}
/**
* MQTT断开连接回调
*/
void mqttDisconnectedCb(uint32_t *args) {
MQTT_Client* client = (MQTT_Client*) args;
INFO('MQTT: Disconnected
');
}
/**
* MQTT发布消息回调
*/
void mqttPublishedCb(uint32_t *args) {
MQTT_Client* client = (MQTT_Client*) args;
INFO('MQTT: Published
');
}
串口透传:
当模块的WiFi和MQTT服务器都连接上之后,模块就开始监听串口和服务器的数据,如果串口有数据过来便转发到服务器或者进行OTA升级,如果服务器有指令下发就转发给串口。
/**
* MQTT接收数据回调(用于OTA升级和串口透传)
*/
void mqttDataCb(uint32_t *args, const char* topic, uint32_t topic_len,
const char *data, uint32_t data_len) {
char *topicBuf = (char*) os_zalloc(topic_len + 1), *dataBuf =
(char*) os_zalloc(data_len + 1);
uint8 *pdata = (uint8*)data;
uint16 len = data_len;
uart0_tx_buffer(pdata, len);//串口输出
MQTT_Client* client = (MQTT_Client*) args;
os_memcpy(topicBuf, topic, topic_len);
topicBuf[topic_len] = 0;
os_memcpy(dataBuf, data, data_len);
dataBuf[data_len] = 0;
// INFO('Receive topic: %s, data: %s
', topicBuf, dataBuf);
//data = {'url'='http://yourdomain.com:9001/ota/'}
if (os_strcmp(topicBuf, ota_topic) == 0) {
char url_data[200];
if(get_josn_str(dataBuf,'url',url_data)){
// INFO('ota_start
');
ota_upgrade(url_data,ota_finished_callback);
}
}
os_free(topicBuf);
os_free(dataBuf);
}
/**
* ota升级回调
*/
void ICACHE_FLASH_ATTR ota_finished_callback(void * arg) {
struct upgrade_server_info *update = arg;
if (update->upgrade_flag == true) {
INFO('OTA Success ! rebooting!
');
system_upgrade_reboot();
} else {
INFO('OTA Failed!
');
}
}
其他问题:连接的服务器地址,端口号等信息需要写在代码里烧录进模块,这些信息在在mqtt_config.h文件中定义。
上电后可以在串口助手看到打印的MAC地址:
按下配网按键(GPIO14接地),进入配网模式,使用APP或者微信公众号将信息发给模块便可联网,联网后自动连接MQTT服务器。
至此连接完成,后续只需要串口发数据给模块,便可在服务器收到信息,服务器下发指令,单片机串口也可以接收到数据。但是要记得订阅主题哦。该透传代码烧录完成可搭配任意MCU的串口使用。非常便捷。由于项目期较远,可能介绍的不是很详细,需要的大大们可以点击阅读原文回帖获取源码。自行查看。
- esp8266 如何读取串口数据
- STM32、ESP8266与MQTT连接阿里云物联网的串口通信异常解析
- 021_STM32程序移植之_ESP8266连接onenet
- IoT毕设 | 机智云AIoT+ESP8266+物联网智能家居控制系统
- 机智云AIoT+ESP8266+物联网智能家居控制系统
- 基于ESP8266 WIFI网络控制和机智云的智能家居管控
- 基于ESP8266的机智云平台控制系统设计
- 如何使用esp8266通过STM32F103RB Nucleo板将可变电阻的模拟值发送到远程服务器
- ESP8266烧写Gagent固件
- ESP8266应用案例 基于STM32核心板获取网络天气数据