电源管理
返回首页

LED信号灯驱动器参考设计

2011-12-24 来源:电子发烧友网

LED信号灯驱动器参考设计

Abstract: This application note presents a reference design for a signal-lamp linear LED driver that consists of six strings of 4 LEDs per string and delivers 350mA per string with a common cathode configuration. Common cathode arrangements require that the current-sense resistors be placed on the high (anode) side, which forces the LED drivers to use a level shifter. 

Circuit Description

This application note describes a linear LED driver for six strings of 4 LEDs to be used in a signal lamp. The LED load provides independent access to the anodes of each string, but the cathodes are common connected. The circuit operates from an automotive battery with a minimum voltage of 10V and a maximum of 28V, while delivering 350mA to each string.

Because of the common cathode configuration, the current-sense resistors must be located on the anode side of the LED strings. Since the LED driver's (MAX16836) current-sense inputs are limited to 4V of common-mode voltage, the voltage across the sense resistors must be level shifted and ground referenced to be compatible with the drivers. The PNP transistor pairs translate the voltage across the LED current-sense resistor to a GND-referenced voltage that is fed into the current-sense pin of the MAX16836. The following equations provide the values for R1, R2, R3, and R4 (in the U1 section of the schematic):

Equations 1 and 2.

Where VSENSE is the current-sense voltage of the IC (200mV).

When the LED string is at its minimum voltage (7.6V) and the input is at its maximum (28V), the LED drivers experience losses of over 7W. Dissipating this heat is almost impossible with circuit board heatsinking methods, so at high voltages a dimming signal with reduced duty cycles (down to 25%) drives the UNIVERSAL DIM input to lessen the power dissipation in the drivers.

This reference design allows for independent enables that allow each string to be controlled separately.

Figure 1 presents a schematic for the circuit, and Table 1 provides the Bill of Materials (BOM). The following are the electrical input requirements and output capabilities.

VIN: 11V to 28V
PWMIN: 10% to 100%
VLED configuration: 7.6VDC (min) to 10VDC (max), 350mA

Figure 1. Schematic of the driver design.
More detailed image (PDF, 7.96kB)
Figure 1. Schematic of the driver design.

Table 1. Bill of Materials

Designator Component Description Footprint Quantity
C1, C2, C3, C4, C5, C6 Nonpolarized capacitor 0.1µF, 25V 0603 6
C10, C11, C12, C13, C14, C15 Nonpolarized capacitor 0.1µF, 50V 0603 6
Q1, Q2, Q3, Q4, Q5, Q6 Dual PNP transistor DMMT5401 6-SOT23 6
R1, R5, R9, R13, R17, R21 Resistor 0.5Ω 0603 6
R2, R6, R10, R14, R18, R22 Resistor 866Ω 0603 6
R3, R7, R11, R15, R19, R23 Resistor 1.00kΩ 0603 6
R4, R8, R12, R16, R20, R24 Resistor 40.2Ω 0603 6
U1, U2, U3, U4, U5, U6 MAX16836ATE High-brightness LED driver 5mm x 5mm, 16-TQFN with exposed pad 6
进入电源管理查看更多内容>>
相关视频
  • MIT 6.622 Power Electronics

  • 下世代能量转换技术

  • 开关电源之Buck变换器的环路分析与补偿

  • 自激振荡开关电源电路构成特点及工作原理介绍

  • 开关电源入门视频(BUCK)

  • 电源小白到实战

精选电路图
  • 简洁的过零调功器电路设计与分析

  • 开关电源的基本组成及工作原理

  • 比较常见的功率整流器和滤波电路

  • 基于M66T旋律发​​生器的电路图解析

  • 一个简单的红外耳机电路

  • 基于CA3193的热电偶放大器电路

    相关电子头条文章