一、介绍 emWin
GUI 库很多,emWin在STM32,NXP上大显身手。emWin的前身UCGUI,而UCGUI 的高级版本就是 emWin, 而 STemWin 是SEGGER 授权给 ST 的 emWin 版本,ST的芯片可以免费使用 STemWin,而且 STemWin 针对 ST 的芯片做了优化。
二、emWin 支持平台
emWin 支持的硬件平台非常广泛,支持几乎所有的 16 位或 32 位微控制器,从 ARM7、ARM9 到 Cortex-M3、Cortex-M4、Cortex-M7 再到 Cortex-A9 都能运行,甚至在 Cortex-M0上也能跑。
emWin 常用配套的软件工具:
BmpCvtST:位图转换器。它将常见的图像文件格式(如BMP,GIF和PNG)转换为所需的emWin位图格式。--File->Save As将图片数据保存为.c文件
FontCvtST:字体转换器。将字符字体转换成.c文件。Extended
GUIBuilder:界面编辑器。 用于显示界面的前期设计,或在不了解 C 语言的情况
下设计界面。 emWin的小部件在GUIBuilder可以直接通过拖放来放置和调整大小,而不必编写源代码。可以按上下文菜单添加其他属性,可以通过编辑小部件的属性来微调。 设计好的界面可以保存为 C 文件,直接添加进工程中使用,但是界面的交互逻辑需要用户自定义的代码来实现。
三、emWin 可视化工具AppWizard
下面进行移植:
开发板搭载的16MB SDRAM芯片MT48LC4M32B2B5-6A,F7和F4系的FMC一样,一共6个bank区,开发板上的sdram位于SDRAM Bank1,因此在cubemx中选择SDCKE0+SDNE0,查看MT48LC4M32B2B5数据手册可知其容量大小为4 Meg x 32 (1 Meg x 32 x 4 banks),即128Mb(16MB),但是由于板上数据线只用到16位,可用实际大小只有8MB,将sdram配置如图所示(根据数据手册确定相关参数)。
#include "sdram.h"
static SDRAM_HandleTypeDef sdramHandle;
static FMC_SDRAM_TimingTypeDef Timing;
static FMC_SDRAM_CommandTypeDef Command;
/**
* [url=home.php?mod=space&uid=159083]@brief[/url] Initializes SDRAM MSP.
* @param hsdram: SDRAM handle
* @param Params
* @retval None
*/
void SDRAM_MspInit(SDRAM_HandleTypeDef *hsdram, void *Params)
{
static DMA_HandleTypeDef dma_handle;
GPIO_InitTypeDef gpio_init_structure;
/* Enable FMC clock */
__HAL_RCC_FMC_CLK_ENABLE();
/* Enable chosen DMAx clock */
__DMAx_CLK_ENABLE();
/* Enable GPIOs clock */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
/* Common GPIO configuration */
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Pull = GPIO_PULLUP;
gpio_init_structure.Speed = GPIO_SPEED_FAST;
gpio_init_structure.Alternate = GPIO_AF12_FMC;
/* GPIOC configuration */
gpio_init_structure.Pin = GPIO_PIN_3;
HAL_GPIO_Init(GPIOC, &gpio_init_structure);
/* GPIOD configuration */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3 | GPIO_PIN_8 | GPIO_PIN_9 |
GPIO_PIN_10 | GPIO_PIN_14 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOD, &gpio_init_structure);
/* GPIOE configuration */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_7| GPIO_PIN_8 | GPIO_PIN_9 |\
GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |\
GPIO_PIN_15;
HAL_GPIO_Init(GPIOE, &gpio_init_structure);
/* GPIOF configuration */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2| GPIO_PIN_3 | GPIO_PIN_4 |\
GPIO_PIN_5 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |\
GPIO_PIN_15;
HAL_GPIO_Init(GPIOF, &gpio_init_structure);
/* GPIOG configuration */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4| GPIO_PIN_5 | GPIO_PIN_8 |\
GPIO_PIN_15;
HAL_GPIO_Init(GPIOG, &gpio_init_structure);
/* GPIOH configuration */
gpio_init_structure.Pin = GPIO_PIN_3 | GPIO_PIN_5;
HAL_GPIO_Init(GPIOH, &gpio_init_structure);
/* Configure common DMA parameters */
dma_handle.Init.Channel = SDRAM_DMAx_CHANNEL;
dma_handle.Init.Direction = DMA_MEMORY_TO_MEMORY;
dma_handle.Init.PeriphInc = DMA_PINC_ENABLE;
dma_handle.Init.MemInc = DMA_MINC_ENABLE;
dma_handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
dma_handle.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
dma_handle.Init.Mode = DMA_NORMAL;
dma_handle.Init.Priority = DMA_PRIORITY_HIGH;
dma_handle.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
dma_handle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
dma_handle.Init.MemBurst = DMA_MBURST_SINGLE;
dma_handle.Init.PeriphBurst = DMA_PBURST_SINGLE;
dma_handle.Instance = SDRAM_DMAx_STREAM;
/* Associate the DMA handle */
__HAL_LINKDMA(hsdram, hdma, dma_handle);
/* Deinitialize the stream for new transfer */
HAL_DMA_DeInit(&dma_handle);
/* Configure the DMA stream */
HAL_DMA_Init(&dma_handle);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(SDRAM_DMAx_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(SDRAM_DMAx_IRQn);
}
/**
* @brief Programs the SDRAM device.
* @param RefreshCount: SDRAM refresh counter value
* @retval None
*/
void SDRAM_Initialization_sequence(uint32_t RefreshCount)
{
__IO uint32_t tmpmrd = 0;
/* Step 1: Configure a clock configuration enable command */
Command.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;
Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command.AutoRefreshNumber = 1;
Command.ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);
/* Step 2: Insert 100 us minimum delay */
/* Inserted delay is equal to 1 ms due to systick time base unit (ms) */
HAL_Delay(1);
/* Step 3: Configure a PALL (precharge all) command */
Command.CommandMode = FMC_SDRAM_CMD_PALL;
Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command.AutoRefreshNumber = 1;
Command.ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);
/* Step 4: Configure an Auto Refresh command */
Command.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command.AutoRefreshNumber = 8;
Command.ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);
/* Step 5: Program the external memory mode register */
tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 |\
SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |\
SDRAM_MODEREG_CAS_LATENCY_2 |\
SDRAM_MODEREG_OPERATING_MODE_STANDARD |\
SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;
Command.CommandMode = FMC_SDRAM_CMD_LOAD_MODE;
Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command.AutoRefreshNumber = 1;
Command.ModeRegisterDefinition = tmpmrd;
/* Send the command */
HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT);
/* Step 6: Set the refresh rate counter */
/* Set the device refresh rate */
HAL_SDRAM_ProgramRefreshRate(&sdramHandle, RefreshCount);
}
/*******************************************************************************
* Function Name : SDRAM_Init
* Description : SDRAM初始化
* Input : None
* Output : None
* Return : None
* Note : None
*******************************************************************************/
uint8_t SDRAM_Init(void)
{
static uint8_t sdramstatus = SDRAM_ERROR;
/* SDRAM device configuration */
sdramHandle.Instance = FMC_SDRAM_DEVICE;
/* Timing configuration for 100Mhz as SD clock frequency (System clock is up to 200Mhz) */
Timing.LoadToActiveDelay = 2;
Timing.ExitSelfRefreshDelay = 7;
Timing.SelfRefreshTime = 4;
Timing.RowCycleDelay = 7;
Timing.WriteRecoveryTime = 2;
Timing.RPDelay = 2;
Timing.RCDDelay = 2;
sdramHandle.Init.SDBank = FMC_SDRAM_BANK1;
sdramHandle.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
sdramHandle.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
sdramHandle.Init.MemoryDataWidth = SDRAM_MEMORY_WIDTH;
sdramHandle.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
sdramHandle.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_2;
sdramHandle.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
sdramHandle.Init.SDClockPeriod = SDCLOCK_PERIOD;
sdramHandle.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
sdramHandle.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* SDRAM controller initialization */
SDRAM_MspInit(&sdramHandle, NULL); /* __weak function can be rewritten by the application */
if(HAL_SDRAM_Init(&sdramHandle, &Timing) != HAL_OK)
{
sdramstatus = SDRAM_ERROR;
}
else
{
sdramstatus = SDRAM_OK;
}
/* SDRAM initialization sequence */
SDRAM_Initialization_sequence(REFRESH_COUNT);
return sdramstatus;
}
/*******************************************************************************
* Function Name : SDRAM_ReadData_WORD
* Description : 读SDRAM数据32位方式
* Input : uwStartAddress 读取起始地址
uwDataSize 读取大小
* Output : pData 读取数据的存储指针
* Return : None
* Note : None
*******************************************************************************/
uint8_t SDRAM_ReadData_WORD(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize)
{
if(HAL_SDRAM_Read_32b(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
{
return SDRAM_ERROR;
}
else
{
return SDRAM_OK;
}
}
/*******************************************************************************
* Function Name : SDRAM_ReadData_DMA_WORD
* Description : DMA方式读SDRAM数据32位方式
* Input : uwStartAddress 读取起始地址
uwDataSize 读取大小
* Output : pData 读取数据的存储指针
* Return : None
* Note : None
*******************************************************************************/
uint8_t SDRAM_ReadData_DMA_WORD(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize)
{
if(HAL_SDRAM_Read_DMA(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
{
return SDRAM_ERROR;
}
else
{
return SDRAM_OK;
}
}
/*******************************************************************************
* Function Name : SDRAM_WriteData_WORD
* Description : 向SDRAM写数据32位方式
* Input : uwStartAddress 写入起始地址
uwDataSize 写入大小
pData 待写入的数据
* Output : None
* Return : None
* Note : None
*******************************************************************************/
uint8_t SDRAM_WriteData_WORD(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize)
{
if(HAL_SDRAM_Write_32b(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
{
return SDRAM_ERROR;
}
else
{
return SDRAM_OK;
}
}
/*******************************************************************************
* Function Name : SDRAM_WriteData_DMA_WORD
* Description : DMA方式向SDRAM写数据32位方式
* Input : uwStartAddress 写入起始地址
uwDataSize 写入大小
pData 待写入的数据
* Output : None
* Return : None
* Note : None
*******************************************************************************/
uint8_t SDRAM_WriteData_DMA_WORD(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize)
{
if(HAL_SDRAM_Write_DMA(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
{
return SDRAM_ERROR;
}
else
{
return SDRAM_OK;
}
}
/*******************************************************************************
* Function Name : SDRAM_ReadData_BYTE
* Description : 读SDRAM数据8位方式
* Input : uwStartAddress 读取起始地址
uwDataSize 读取大小
* Output : pData 读取数据的存储指针
* Return : None
* Note : None
*******************************************************************************/
uint8_t SDRAM_ReadData_BYTE(uint32_t uwStartAddress, uint8_t *pData, uint32_t uwDataSize)
{
if(HAL_SDRAM_Read_8b(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
{
return SDRAM_ERROR;
}
else
{
return SDRAM_OK;
}
}
/*******************************************************************************
* Function Name : SDRAM_WriteData_BYTE
* Description : 向SDRAM写数据8位方式
* Input : uwStartAddress 写入起始地址
uwDataSize 写入大小
pData 待写入的数据
* Output : None
* Return : None
* Note : None
*******************************************************************************/
uint8_t SDRAM_WriteData_BYTE(uint32_t uwStartAddress, uint8_t *pData, uint32_t uwDataSize)
{
if(HAL_SDRAM_Write_8b(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK)
{
return SDRAM_ERROR;
}
else
{
return SDRAM_OK;
}
}
//发送命令给SDRAM BANK
uint8_t BSP_SDRAM_Sendcmd(FMC_SDRAM_CommandTypeDef *SdramCmd)
{
if(HAL_SDRAM_SendCommand(&sdramHandle, SdramCmd, SDRAM_TIMEOUT) != HAL_OK)
{
return SDRAM_ERROR;
}
else
{
return SDRAM_OK;
}
}
//SDRAM DMA传输中断
void BSP_SDRAM_DMA_IRQHandler(void)
{
HAL_DMA_IRQHandler(sdramHandle.hdma);
}
附件为移植好的
GUI 库很多,emWin在STM32,NXP上大显身手。emWin的前身UCGUI,而UCGUI 的高级版本就是 emWin, 而 STemWin 是SEGGER 授权给 ST 的 emWin 版本,ST的芯片可以免费使用 STemWin,而且 STemWin 针对 ST 的芯片做了优化。
非常感谢给出例程。