X
首页
技术
模拟电子
单片机
半导体
电源管理
嵌入式
传感器
最能打国产芯
应用
汽车电子
工业控制
家用电子
手机便携
安防电子
医疗电子
网络通信
测试测量
物联网
最能打国产芯
大学堂
首页
直播
专题
TI 培训
论坛
汽车电子
国产芯片
电机驱动控制
电源技术
单片机
模拟电子
PCB设计
电子竞赛
DIY/开源
嵌入式系统
医疗电子
颁奖专区
【厂商专区】
【电子技术】
【创意与实践】
【行业应用】
【休息一下】
最能打国产芯
活动中心
直播
发现活动
颁奖区
电子头条
参考设计
下载中心
分类资源
文集
排行榜
电路图
Datasheet
最能打国产芯
电源技术
[分享] DIY一款60W无频闪单级PFC反激恒流电源!从入门到精通的设计指南!
木犯001号
2024-3-29 15:45
楼主
由于时间关系,本文就做一款简单的“60W-无频闪-单级PFC-反激恒流电源”来跟大家一起从入门走向精通。
⊙名称:60W-无频闪-单级PFC-反激恒流电源
⊙架构:反激/原边反馈
⊙工作模式:断续模式(为了提高THD)
⊙输入电压:100~300V AC
⊙输出参数:36V_1500mA DC
⊙符合标准:CE、3C、UL
⊙PF:>0.9 @230VAC
⊙THD:全电压范围内小于8%
⊙效率:>89%@230V
⊙输出纹波电流:<3%
⊙频闪:相机拍摄无水波纹
⊙浪涌电压: 3.0KV
⊙保护:开路保护、短路保护
===========================================
反激电源简化原理图:
反激名称由来:输出端在原边绕组断开电源时获得能量故而得名。
反激电源原理:
当原边开关管导通时(Ton)时,变压器初级(Np)有电流(Ip),并将能量储存于其中。由于Np与Ns极性相反,此时次级二极管D反向偏压而截止,无能量传送到负载。当开关关断(Toff)时,变压器原边绕组将产生一反向电势,此时次级二极管D正向导通,负载有电流流通。
什么是原边反馈:
===========================================
电源网-54W_1500mA-Surge3.0KV-PCB文件.rar
电源网-54W_1500mA-Surge3.0KV-原理图.rar
1.原理图:
下面分别介绍各个部分的作用:
保险丝采用4.7R的绕线电阻,绕线电阻抗浪涌能力强,并且它是电阻丝绕制,会存在较大的寄生电感,可以吸收浪涌。
再往上就是桥堆了。R1,R2为启动电阻,上点初期,通过两个电阻给VDD电容充电,达到芯片启动电压后,DRV脚开始输出PWM信号
↑↑↑上图红框部分:C1,L1,C2组成了π型滤波器,滤掉高频噪声,电磁兼容有这个要求,一般欧洲执行标准为EN55015
框中部分为变压器,这个变压器一共3个绕组,分别为
2.辅组绕组
开关管导通时,变压器开始储能,辅组绕组和次级绕组的二极管均反向截止。开光管关断时,辅组绕组耳机导通,通过D2给VDD电容充电,维持芯片所需的能量。同时次级二极管也导通,将能量传递至负载
在开关管关断期间,变压器退磁,在R6(芯片DSEN脚)上产生一个方波,芯片内部检测方波顶端电压,以实现检测次级电压,实现空载保护(这是横流模式,所以空载时输出电压会很高,需要做限制)。
另一方面,退磁结束之后变压器开始震荡,此时R6上电压迅速跌落,芯片检测此跌落电压,就可以得到退磁结束的时间。如下图所示:
临界模式
断续模式(DCM)在退磁结束之后会出现几个振铃,而临界模式(CRM,也称准谐振模式)在退磁结束之后开关管会马上打开。
↑↑↑上图红框部分:
R3,R4为驱动MOS的限流电阻,栅极电阻的作用:
1、消除栅极振荡
绝缘栅器件(IGBT、MOSFET)的栅射(或栅源)极之间是容性结构,栅极回路的寄生电感又是不可避免的,如果没有栅极电阻,那栅极回路在驱动器驱动脉冲的激励下要产生很强的振荡,因此必须串联一个电阻加以迅速衰减。
2. 转移驱动器的功率损耗
电容电感都是无功元件,如果没有栅极电阻,驱动功率就将绝大部分消耗在驱动器内部的输出管上,使其温度上升很多。
3. 调节功率开关器件的通断速度
栅极电阻小,开关器件通断快,开关损耗小;反之则慢,同时开关损耗大。但驱动速度过快将使开关器件的电压和电流变化率大大提高,从而产生较大的干扰,严重的将使整个装置无法工作,因此必须统筹兼顾。
栅极电阻功率的计算:
栅极电阻的功率由IGBT栅极驱动的功率决定,一般来说栅极电阻的总功率应至少是栅极驱动功率的2倍。
MOS栅极驱动功率P=FUQ,其中:F为工作频率;
U为驱动输出电压的峰峰值;
Q为栅极电荷,可参考IGBT模块参数手册。
R9并联再MOS栅极和源极之间,这个电阻一般取10-100K,防止在未接驱动引线的情况下,或者受到静电干扰,偶然加高压,误导通而烧毁MOS。
↑↑↑上图红框部分:
这里就是RDC吸收部分了,MOS关断后,即退磁期间,变压器3脚对地会产生一个很高的电压尖峰,这个电压尖峰加在MOS管上如果超出MOS耐压,则会烧坏MOS,二来,会产生很强的电磁干扰。一般电容取1-3.3nF,电阻取几百K,二极管一般选慢恢复的,下面跟大家分享一下我以前收藏的:“普通二极管与快恢复二极管的振铃吸收特性对比”
一、分别测量两个电源的振铃吸收电路中电容上的电压波形
1 号电源模块的振铃吸收电路由RS1M 快恢复二极管、1000v1000p 瓷片电容和200k 贴片电阻组成,下图是1 号电源的振铃吸收电路和示波器接入方法(示波器的地线接整流滤波后的正极,探头接吸收电路的中间;如果示波器的地线接电源负极,则测得的电压增加300 多V,测量精度也下降不少)
测得电压波形如下:
场管截断前,电容上的电压高于电源电压约99v,当场管截断时,振铃电压会将1000pF 电容充电到约142v,也就是电容上的电压上升约43v,但该电压在波峰后的192ns 时间内下降约33v 到约109v,然后间歇期放电到约99v,迎接下一个振铃波峰的到来。
电容上电压快速下降的原因肯定是快速放电,而快速放电只能通过快恢复二极管RS1M,也就是说,虽然是快恢复二极管,但也存在反应时间(查资料得RS1M 的最大恢复时间为0.5μs),在本次测量中,是在192ns 时间内,二极管PN 结内的载流子尚未消失,所以可以反向导电,将波峰时给电容充的电释放约3/4,因为此时的释放,初级是回路的一部分,此时初级回路加反向电流,其感应是增大了次级正向电流,所以这3/4 是被电路回收利用了的,另外的1/4 在间歇期释放,这部分是损耗。
这个电源电路的工作频率约63kHz,周期约16μs,振铃脉冲占不到1μs,也就是在约15μs 的时间,1000pF电容放电约9.5v,在平均电压约104v 下,200k 电阻可以将1000pF 电容放电104v/200k*15μs/1000pF=7.8v,实测是下降约10v,相差的约2v 可考虑为快恢复二极管的结电容影响以及测量误差。
从这几个数值也可以求出振铃吸收电路中电阻消耗的功率,电阻上的平均电压为104v,消耗功率P=104*104/200000=0.054w,电容上另有约0.012w 的功率通过PN 结电容释放,这部分主要在开关管上损耗。
2 号电源的振铃吸收电路是普通整流二极管M7、1000v 1000p 瓷片电容和150k 贴片电阻组成,吸收电路电容上的电压波形如下:
2 号电源的频率约48kHz,周期约21μs,可见由于周期更长,电阻更小,电容上的电压下降更多,约15v,同时,由于第一个振铃波峰过去后,振铃波谷时电容上电压下降较多,出现了较为明显的第二个振铃波峰。
二、拆除振铃吸收电路的电阻
以前见过有的电路上的振铃吸收电路只有二极管和电容,也见过某厂家在网上宣称他们的振铃吸收电路无损耗但没公开电路,怀疑是不是就是不用电阻,为了试试能不能完全依靠二极管恢复期间的反向电流来对电容进行放电,把电路中的电阻拆除测试,发现电容的电压被充得很高,几乎没有波动,而IC 的输出端振铃电压高达184v,波形如下:
三、将振铃吸收电路的电阻增大
将 1 号电源的200k 电阻换成510k,测得振铃吸收电路电容上的电压波形如下,可见电容上的电压提高不少,振铃电压也提高约6v,振铃前后的电压差也减小约4v,可见振铃吸收电路的效果减小,损耗也减小
将2 号电源的150k 电阻换成510k,振铃吸收电路电容上的电压波形如下。换电阻前,振铃脉冲最高电压约112v,但捕捉到的112v 脉冲极少,捕捉到的高值以111v 为主,换电阻后,振铃脉冲最高电压仍为112v,捕捉到的112v 脉冲较多,也就是说,把150k 电阻换成510k 后,振铃电压提高大约1v,而振铃前的电压由约68v(最低67v)提高到了约76v,电压差由约15v 下降到约6v。可见,适当增大电阻后,振铃波峰并没有明显上升,但损耗明显下降。第二个振铃波峰明显减小,但仍明显,应该可以将电阻再适当增大。
四、更换1 号电源振铃吸收电路的二极管
将 1 号电源振铃吸收电路的快恢复二极管RS1M 换成普通整流二极管1N4007(参数同M7),振铃峰值约140v,比原电路下降近2v,振铃前后的电压差约5v,比原来减少一半,也就是损耗下降约一半。在平均电压约99v 下,510k电阻可以将1000pF 电容放电99v/510k*15 μ s/1000pF=2.9v, 消耗功率为99v*99v/510kΩ=0.019w,实测是下降约5.2v,应该是二极管PN 结电容放电的结果,损耗约0.015w。
实际设计中,电阻的选择应使振铃脉冲前后电容的电压尽量接近次级工作时开关管的漏极(或集电极)电压,若振铃前的电压较低,则应增大电阻以减小损耗,若电压较高,应减小电阻以降低电压,降低脉冲电压。
五、小结
本次实验可以得到三个结论:
1、振铃吸收电路是不能省略电阻的;
2、普通整流二极管用于振铃吸收电路效果比快恢复二极管好;
3、适当增大振铃吸收电路的电阻可以在不明显影响振铃吸收的前提下减小损耗。
点赞
回复评论 (2)
沙发
hellokitty_bean
好期待也能像楼主一样,通过DIY也可以从入门到精通呀!
点赞
2024-3-30 12:15
板凳
振动试验仪器
电路工作过程进行了详细讲解,要看完整是要花时间了。
点赞
2024-4-3 17:22
最新活动
报名直播赢【双肩包、京东卡、水杯】| 高可靠性IGBT的新选择——安世半导体650V IGBT
30套RV1106 Linux开发板(带摄像头),邀您动手挑战边缘AI~
安世半导体理想二极管与负载开关,保障物联网应用的稳健高效运行
免费申请 | 上百份MPS MIE模块,免费试用还有礼!
PI 电源小课堂|无 DC-DC 变换实现多路高精度输出反激电源
2024 瑞萨电子MCU/MPU工业技术研讨会——深圳、上海站, 火热报名中
随便看看
mpy允许将bytes/bytearray传递给json.loads
ATX电源的控制电路讲解(TL494及LM339集成电路)
模拟电路一日通(Ti的模拟电路应用基础资料)
树莓派 Pico 测评 —— Pico开箱文 & 资料准备
用手机充电器给MCU供电和用电池给供电有什么区别?
电源开关设计秘籍30例之秘籍1:为您的电源选择正确的工作频率
求助MSP430FR5989的GPIO口输出问题
Industry’s First Fully Isolated Industrial CAN Transceivers
Linux源代码分析
两节5号充电电池(镍氢)
关于OK6410 Eboot过大,修改配置空间!!!
B6TS-08NF
ir2184 全桥逆变电路
同维电子(深圳)有限公司怎么样?软件工程师笔试题考什么?阅读[1] 回复[0]
很多资料网址
单片机系统里面,按键检测是用中断好还是用程序来扫描?
调了下ufun的三轴
新手问,在pb4.2下 build过程中输出窗口出现“系统找不到指定的路径。”
lm3s811中文版datasheet
wince 5.0 下可以浏览wap站点吗?
电子工程世界版权所有
京B2-20211791
京ICP备10001474号-1
京公网安备 11010802033920号
回复
写回复
收藏
回复