本方程式中,G 相当于系统增益,VCM 为相对于接地电压同样施加于系统输入端的变化电压,而 VOUT 为相对于变化 VCM 值的系统输出电压 变化。
在 CMR 方面,运算放大器的内部活动很简单,其失调电压变化是唯一的问题。就仪表放大器而言,有两个影响器件 CMR 的因素。第一个也是最 重要的因素是,涉及第三个放大器(图 1,A3)电阻比率的平衡问题。例如,如果 R1 等于 R3,R2 等于R4,则理想状况下的 三运放仪表放大器 CMR 为无穷大。然而,我们还是要回到现实世界中来,研究 R1、R2、R3 和 R4 与仪表放大器 CMR 的关系。
具体而言,将 R1:R2 同 R3:R4 匹配至关重要。结合 A3,这 4 个电阻从 A1 和 A2的输出减去并增益信号。电阻比之间的错配会在 A3 输出端形 成误差。方程式 2 在这些电阻关系方面会形成 CMR 误差:
例如,如果 R1、R2、R3 和 R4 接近相同值,且 R3:R4 等于 R1/R2 的 1.001,则该 0.1% 错配会带来仪表放大器 CMR 的降低,从理想水平降至 66 dB 级别。
例如,如果 R1、R2、R3 和 R4 接近相同值,且 R3:R4 等于 R1/R2 的 1.001,则该 0.1% 错配会带来仪表放大器 CMR 的降低,从理想水平降至 66 dB 级别。
根据方程式 1,仪表放大器 CMR 随系统增益的增加而增加。这是一个非常好的特性。方程式 1 可能会激发仪表放大器设计人员确保有许多可用增 益,但是这种方法存在一定的局限性。A1 和 A2 开环增益误差和噪声。放大器的开环增益等于 20 log (ΔVOUT/ΔVOS)。随着 A1 和 A2 增益的增加, 放大器开环增益失调误差也随之增加。A1 和 A2 的输出振幅变化一般涵盖电源轨。仪表放大器增益更高的情况下,运算放大器的开环增益误差和噪声 占主导。通过 RSS 公式,这些误差降低了更高增益下的仪表 CMR。因此,您会看到仪表放大器的 CMR 性能值往往会在更高增益时达到最大值。
因此,从 CMR 角度来看,仪表放大器就像是一个在不同系统增益下器件各部分都诱发 CMR 误差的系统。当您对器件的内部原理进行研究时,它 便不再如此神秘。您把各个部分都分开来,就会一目了然。
[
本帖最后由 qwqwqw2088 于 2012-12-27 08:43 编辑 ]