11。仿真工作正常对于DSP的基本要求
1)DSP电源和地连接正确。 2)DSP时 钟正确。 3)DSP的主要控制信号,如RS和HOLD信号接高电平。 4)C2000的watchdog关掉。 5)不可屏蔽中断NMI上拉高电平。
CCS或Emurst运行时提示“Can't Initialize Target DSP”
1)仿真器连接是否正常?
2)仿真器的I/O设置是否正确?
3)XDSPP仿真器的 电源是否正确?
4)目标系统是否正确?
5)仿 真器是否正常?
6)DSP工作的基本条件是否具备。
建议使用目标板测试。
12。为什么CCS需要安装Driver?
CCS是开放的软件平台,它可以支持不同的硬件接口,因此不同的 硬件接口必须通过标准的Driver同CCS连 接。
Driver安装的常见问题?
请 认真阅读“安装手册”和Driver盘中的Readme。 1)对于SEED-XDS,安装Readme中的步骤,将I/O口设为240/280/320/340。 2)对于SEED-XDSPP,安装Readme中的步骤,将I/O口设为378或278。3)对于SEED-XDSUSB, 必须连接目标板,安装 Readme中的步骤,将I/O口 设为A,USB连接后,主机将自动激活相应 的Driver。 4)对于SEED-XDSPCI,安装Readme中的步骤,将I/O口设为240,PCI接口板插入主机后,主机将自动激活相应的Driver。 5)对于Simulator,需要选择不同的CFG文件,以模拟不同的DSP。 6)对于C5402 DSK,将I/O口设为请认真阅读“安装手册”和Driver盘中的Readme。 1)对于SEED-XDS,安装Readme中的步骤,将I/O口设为240/280/320/340。 2)对于SEED-XDSPP,安装Readme中的步骤,将I/O口设为378或278。注意主机BIOS中并口的型式必须同xds510pp.ini 中 一致。 3)对于SEED-XDSUSB, 必须连接目标板,安装Readme中的步骤,将I/O口 设为240/280/320/340,USB连 接后,主机将自动 激活相应的Driver。 4)对 于SEED-XDSPCI,安装Readme中 的步骤,将I/O口设为240/280/320/340,PCI接口板插入主机后,主机将自动激活相 应的Driver。 5)对于Simulator,需要选择不同的CFG文件,以模拟不同的DSP。 6)对于C5402 DSK,将I/O口设为378或278。 7)对于C6211/6711 DSK,将I/O口设为378或278。 8)对于C6201/C6701 EVM,将I/O口设为0。
13。Link的cmd文件的作用是什么?
Link的cmd文件用于DSP代码的定位。由于DSP的编译器的编译结果是未定位的,DSP没有操作系统来定位执行代 码,每个客户设计的DSP系统的配置也不尽相同,因此需要用户自己定义代码的安装位置。以C5000为例,基本格式为:
-o sample.out
-m sample.map
-stack 100
sample.obj meminit.obj
-l rts.lib
MEMORY {
PAGE 0: VECT: origin = 0xff80, length 0x80
PAGE 0: PROG: origin = 0x2000, length 0x400
PAGE 1: DATA: origin = 0x800, length 0x400
}
SECTIONS {
.vectors : {} >PROG PAGE 0
.text : {} >PROG PAGE 0
.data : {} >PROG PAGE 0
.cinit : {} >PROG PAGE 0
.bss : {} >DATA PAGE 1
}
14。如何将OUT文件转换为16进制的文件格式?
DSP 的开发软件集成了一个程序,可 以从执行文件OUT转 换到编程器可以接受的格式,使得编程器可以用次文件烧写EPROM或Flash。对于C2000的程序 为DSPHEX;对于C3x程序为HEX30;对于C54x程序为HEX500;对于C55x程序为HEX55;对于C6x程序为Hex6x。以C32为 例基本格式为:
sample.out -x
-memwidth 8 -bootorg 900000h
-iostrb 0h
-strb0 03f0000h -strb1 01f0000h -o sample.hex
ROMS {
EPROM: org = 0x900000,len=0x02000,romwidth=8
}
SECTIONS {
.text: paddr=boot
.data: paddr=boot
}
15。为什么CCS需要安装Driver?
CCS是开放的软件平台, 它可以支持不同的硬件接口,因此不同的硬件接口必须通过标准的Driver同CCS连接。
16。Link的cmd文件的作用是什么?
Link的cmd文件用于DSP代码的定位。由于DSP的编译器的编译结果是未定位的,DSP没有操作系统来定位执行代码,每个客户设计 的DSP系统的配置也 不尽相同,因此需要用户自己定义代码的安装位置。以C5000为例,基本格式为:
-o sample.out
-m sample.map
-stack 100
sample.obj meminit.obj
-l rts.lib
MEMORY {
PAGE 0: VECT: origin = 0xff80, length 0x80
PAGE 0: PROG: origin = 0x2000, length 0x400
PAGE 1: DATA: origin = 0x800, length 0x400
}
SECTIONS {
.vectors : {} >PROG PAGE 0
.text : {} >PROG PAGE 0
.data : {} >PROG PAGE 0
.cinit : {} >PROG PAGE 0
.bss : {} >DATA PAGE 1
}
17。DSP的C语言同主机C语言的主要区别?
1) DSP的C语言是标准的ANSI C,它不包括同外设联系的扩展部 分,如屏幕绘图等。但在CCS中,为了方便调试,可以将数据通过prinf命令虚拟输出到主机的屏幕上。
2)DSP的C语言的编译过程为,C编译为ASM,再由ASM编译为OBJ。因此C和ASM的对应关系非常明确,非常便于人工优化。
3)DSP的代码需要绝对定位;主机的C的代码有操作系统定位。
4)DSP的C的效率较高,非常适合于嵌入系统。
18。为什么在CCS下编译工具工作不正常?
在CCS下有部分客户会碰到编译工具工作不正常,常见错误为:
1)autoexec.bat的路 径“out of memory”。修改autoexec.bat,清除无用的PATH路径。
2)编译的输出文件(OUT文件)写保护,无法覆盖。删除或修改输出文件的属性。
3)Windows有问题。重新安 装windows。
4)Windows下有程序对CCS有影响。建议用一“干净”的计算机。
19。在CCS下,如何选择有效的存储器空间?
CCS下的存储器空间最好设置同你的硬件,没有的存储器不要有效。这样便于调试,CCS会发现你调入程序时或程序运行时,是 否访问了无效地址。
1)在GEL文件中设置。参见CCS中的示例。
2)在Option菜单下,选择Memory Map选项,根据你的硬件设置。注意一定要将Enable Memory Mapping置为使能。
20。在CCS下,OUT文件加载时提示“Data verification failed...”的原因?
Link的CMD文件分配的地址同GEL或设置的有效地址空间不符。中断向量定位处或其它代码、数据段定位处,没有RAM,无法加载OUT文件。解决方法:
1)调整Link的CMD文件,使得定位段处有RAM。
2)调整存储器设置,使得RAM区有效。
21。为什么要使用BIOS?
1)BIOS是Basic I/O System的简称,是基本的输入、输出管理。
2)用于管理任务的调度,程序实时分析,中断管理,跟踪管理和实时数据交换。
3)BIOS是基本的实时系统, 使用BIOS可以 方便地实现多任务、多进程的时间管理。
4)BIOS是eXpress DSP的标准平台,要使用eXpress DSP技术,必须使用BIOS。
22。DSP发展动态
1.TMS320C2000 TMS320C2000系列包括C24x和C28x系列。C24x系列建议使用LF24xx系列替代C24x系列,LF24xx系列的价格比C24x便 宜,性能高于C24x,而且LF24xxA具有加密功能。 C28x系列主要用于大存储设备管理,高 性能的控制场合。
2.TMS320C3x TMS320C3x系列包括C3x和VC33,主要推荐使用VC33。C3x系列是TI浮点DSP的基础,不可能停产,但价格不会进一步下调。
3.TMS320C5x TMS320C5x系列已不推荐使 用,建议使用C24x或C5000系列替代。
4.TMS320C5000 TMS320C5000系列包括C54x和C55x系列。其中VC54xx还不断有新的器件出现,如:TMS320VC5471(DSP+ARM7)。 C55x系列是TI的第三代DSP,功耗为VC54xx的1/6,性能为VC54xx的5倍,是一个正在发展的系列。 C5000系列是目前TI DSP的主流DSP,它涵盖了从低档到中高档的应用领域,目前也是用户最多的系列。
5.TMS320C6000 TMS320C6000系列包括C62xx、C67xx和C64xx。此系列是TI的高档DSP系列。其中C62xx系列是定点的DSP,系列芯片种类较 丰 富,是主要的应用系列。 C67xx系列是浮点的DSP,用于需要高速浮点处理的领域。 C64xx系列是新发展,性能是C62xx的10倍。
6.OMAP系列 是TI专门用于多媒体领域的芯片,它是C55+ARM9,性能卓越,非常适合于手持设备、Internet终端等多媒体应用。
23。5V/3.3V如何混接?
TI DSP的发展同集成电路的发展一样,新 的DSP都是3.3V的,但目前还有许多外围电路是5V的,因此在DSP系统中,经常有5V和3.3V的DSP混接问题。在这些系统中,应注意:
1)DSP输出给5V的电路(如D/A),无需加任何缓冲电路,可以直接连 接。
2)DSP输入5V的信号(如A/D),由于输入信号的电压>4V,超过了DSP的电源电压,DSP的外部信号没有保护电路,需要加缓冲,如 74LVC245等,将5V信号变换成3.3V的信号。
3)仿真器的JTAG口的信号也必须为3.3V,否则有可能损坏DSP。
24。为什么要片内RAM大的DSP效率高?
目前DSP发展的片内存储器RAM越来越大,要设计高效的DSP系统,就应该选择片内RAM较大的DSP。片内RAM同片外存储器相比,有以下优点:
1)片内RAM的速度较快,可以保证DSP无等待运行。
2)对于C2000/C3x/C5000系列,部分片 内存储器可以在一个指令周期内访问两次,使得指令可以更加高效。
3)片内RAM运行稳定,不受外部的干扰影响,也不会干扰外部。
4)DSP片内多总线,在访问片内RAM时,不会影响其它总线的访问,效率较 高。
25。为什么DSP从5V发展成3.3V?
超大规模集成电路的发展从1um,发展到目前的0.1um,芯片的电源电压也随之降低,功 耗也随之降低。DSP也同样从5V发展到目前的 3.3V,核心电压发展到1V。目前主流的DSP的外围均已发展为3.3V,5V的DSP的价格和功耗都价格,以逐渐被3.3V的DSP取代。
26。如何选择DSP的电源芯片?
TMS320LF24xx:TPS7333QD,5V变3.3V,最大500mA。
TMS320VC33: TPS73HD318PWP,5V变3.3V和1.8V,最大750mA。
TMS320VC54xx:TPS73HD318PWP,5V变3.3V和1.8V,最大750mA; TPS73HD301PWP,5V变3.3V和可调,最大750mA。
TMS320VC55xx:TPS73HD301PWP,5V变3.3V和可调,最大750mA。
TMS320C6000: PT6931,TPS56000,最大3A。
27。软件等待的如何使用?
DSP的指令周期较快,访问慢速存储器或外设时需加入等待。等待分硬件等待和软件等待,每一个系列的等待 不完全相同。
1)对于C2000系列: 硬件等待信号为READY,高电平时不等待。 软件等待由WSGR寄存器决定,可以加入最多7个等待。其中程序存储器和数据存储器及I/O可以分别设置。
2)对于C3x系列: 硬件等待信 号为/RDY,低 电平是不等待。 软件等待由总线控制寄存器中的SWW和WTCNY决定,可以加入最多7个等待,但等待是不分段的,除了片内之外 全空间有效。
3)对于C5000系列: 硬件等待信号为READY,高电平时不等待。 软件等待由SWWCR和SWWSR寄存器决定,可以加入最多14个等待。其中程序存储器、控制程序存储器和数据存储器及I/O可以分别设置。
4)对于C6000系列(只限于非同步存储器或外 设): 硬件等待信号为ARDY,高电平时不等待。 软件等待由外部存储器接口控制寄存器决定,总线访问外部存储器或设备的时序可以设置,可以方便的同 异步的存储器或外设接口。
28。中断向量为什么要重定位?
为了方便DSP存储器的配置,一般DSP的中断向量可以重新定位,即可以通过设置寄存器放在存储器空间的任何地方。 注意:C2000的中断向量不能重定位。
29。DSP的最高主频能从芯片型号中获得吗?
TI的DSP最高主频可以从芯片的型号中获得,但每一个系列不一定相同。
1)TMS320C2000系列:
TMS320F206-最高主频20MHz。
TMS320C203/C206- 最高主频40MHz。
TMS320F24x-最高主频20MHz。
TMS320LF24xx-最高主 频30MHz。
TMS320LF24xxA-最 高主频40MHz。
TMS320LF28xx-最高 主频150MHz。
2)TMS320C3x系列:
TMS320C30:最高主频25MHz。
TMS320C31PQL80:最 高主频40MHz。
TMS320C32PCM60: 最高主频30MHz。
TMS320VC33PGE150: 最高主频75MHz。
3)TMS320C5000系 列:
TMS320VC54xx:最高主频160MHz。
TMS320VC55xx:最高主频300MHz。
4)TMS320C6000系列:
TMS320C62xx:最高主频300MHz。
TMS320C67xx:最高主频230MHz。
TMS320C64xx:最高主频720MHz。
30。DSP可以降频使用吗?
可以,DSP的主频均有一定的工作范围,因此DSP均可以降频使用。
31。如何选择DSP的外部存储器?
DSP的速度较快,为了保证DSP的运行速度,外部存储器需要具有一定的速度,否则DSP访问外部存储器时需要加入等待周期。
1)对于C2000系列: C2000系列只能同异步的存储器直接相 接。 C2000系 列的DSP目前的最高速 度为150MHz。 建议可以用的存储器有:
CY7C199-15:32K×8,15ns,5V;
CY7C1021-12:64K×16,15ns,5V; CY7C1021V33-12:64K×16,15ns,3.3V。
2)对于C3x系列: C3x系列只能同异步的存储器直接相接。 C3x系列的DSP的最高速度,5V的为40MHz,3.3V的为75MHz,为保证DSP无等待运行,分别需要外部存储器的速度<25ns和<12ns。建议可以用的存储器有:
ROM: AM29F400-70:256K×16,70ns,5V,加入一个等待;
AM29LV400-55(SST39VF400):256K×16,55ns,3.3V,加入两个等待(目前没有更快的Flash)。
SRAM: CY7C199-15:32K×8,15ns,5V;
CY7C1021-15:64K×16,15ns,5V;
CY7C1009-15:128K×8,15ns,5V;
CY7C1049-15:512K×8,15ns,5V;
CY7C1021V33-15:64K×16,15ns,3.3V;
CY7C1009V33-15:128K×8,15ns,3.3V;
CY7C1041V33-15:256k×16,15ns,3.3V。
3)对于C54x系列: C54x系列只能同异步的存储器直接相接。 C54x系列的DSP的速度为100MHz或160MHz,为保证DSP无等待运行,需要外部存储器的速度<10ns或<6ns。建议可以用的存储器有:
ROM: AM29LV400-55(SST39VF400):256K×16,55ns,3.3V,加入5或9个等待(目前没有更快的Flash)。
SRAM: CY7C1021V33-12:64K×16,12ns,3.3V,加入一个等待;
CY7C1009V33-12:128K×8,12ns,3.3V,加入一个等待。
4)对于C55x和C6000系列: TI的DSP中只有C55x和C6000可以同同步的存储器相连,同步存储 器可以保证系统的数据交换效率更高。
ROM: AM29LV400-55(SST39VF400):256K×16,55ns,3.3V。
SDRAM: HY57V651620BTC-10S:64M,10ns。
SBSRAM: CY7C1329-133AC,64k×32;
CY7C1339-133AC,128k×32。
FIFO:CY7C42x5V-10ASC,32k/64k×18。
32。DSP芯片有多大的驱动能力?
DSP的驱动能力较强,可以不加驱动,连接8个以上标准TTL门。
33。调试TMS320C2000系列的常见问题?
1)单步可以运行,连续运行时总回0地址: Watchdog没有关,连续运行复位DSP回到0地址。
2)OUT文件不能load到片内flash中: Flash不是RAM,不能用简单的写指令写入,需要专门的程序写入。CCS和C Source Debuggerload命 令,不能对flash写入。 OUT文件只能load到片内RAM,或片外RAM中。
3)在flash中如何加入断点: 在flash中可以用单步调试,也可以用硬件断 点的方法在flash中加入断点,软件断点是不能加在ROM中的。硬件断点,设置存储器的地址,当访问该地址时产生中断。
4)中断向量: C2000的中断向量不可重定位,因此中 断向量必须放在0地 址开始的flash内。 在调试系统时,代码放在RAM中,中断向量也必须放在flash内。
34。调试TMS320C3x系列的常见问题?
1)TMS320C32的存储器配置: TMS320C32的程序存储器可以配置为16位或32位;数据存储器可以配置为8位、16位或32位。
2)TMS320VC33的PLL控制: TMS320VC33的PLL控制端只能接1.8V,不能接3.3V或5V。
35。如何调试多片DSP?
对于有MPSD仿真口的DSP(TMS320C30/C31/C32),不能用一套仿真器同时调试,每次只能调试其中的一个DSP;对于有JTAG仿真口 的DSP,可以将JTAG串接在一起,用一套仿真器同时调试多个DSP,每个DSP可以用不同的名字,在不同的窗口中调试。注意:如果在JTAG和DSP 间加入驱动,一定要用快速的门电路,不能 使用如LS的慢速 门电路。
36。在DSP系统中为什么要使用CPLD?
DSP的速度较快,要求译码的速度也必须较快。利用小规模逻辑器件译码的方式,已不能满足DSP系统的要求。同时,DSP系统中也经常需要外部快速部件的 配合,这些部件往往是专门的电路,有可编程器件实现。 CPLD的时序严格,速度较快,可编程性 好,非常适合于实现译码和专门电路。
37。DSP系统构成的常用芯片有哪些?
1)电源: TPS73HD3xx,TPS7333,TPS56100,PT64xx...
2)Flash: AM29F400,AM29LV400,SST39VF400...
3)SRAM: CY7C1021,CY7C1009,CY7C1049...
4)FIFO: CY7C425,CY7C42x5...
5)Dual port: CY7C136,CY7C133,CY7C1342...
6)SBSRAM: CY7C1329,CY7C1339...
7)SDRAM: HY57V651620BTC...
8)CPLD: CY37000系列,CY38000系列,CY39000系列...
9)PCI: PCI2040,CY7C09449...
10)USB: AN21xx,CY7C68xxx...
11)Codec:TLV320AIC23,TLV320AIC10...
12)A/D,D/A:ADS7805,TLV2543...
38。什么是boot loader?
DSP的速度尽快,EPROM或flash的速度较慢,而DSP片内的RAM很快,片外的RAM也较快。为了使DSP充分发挥它的能力,必须将程序代码放 在RAM中运行。为了方便的将代码从ROM中搬到RAM中,在不带flash的DSP中,TI在出厂时固化了一段程序,在上电后完成从ROM或外设将代码 搬 到用户指定的RAM中。 此段程序称为“boot loader”。
38。TMS320C3x如何boot?
在MC/MP管脚为高时,C3x进入boot状态。C3x的boot loader在reset时,判断外部中断管脚的电平。根 据中断配置决定boot的方式为存储器加载还是串口加载,其中ROM的地址可以为三个中的一个,ROM可以为8位。
39。Boot有问题如何解决?
1)仔细检查boot的控制字是否正确。
2)仔细检查外部管脚设置是否正确。
3)仔细检查hex文件是否转换正确。
4)用仿真器跟踪boot过程,分析错误原因。
40。DSP为什么要初始化?
DSP在RESET后,许多的寄存器的初值一般同用户的要求不一致,例如:等待寄存器,SP,中断定位寄存器等,需要通过初始化程序 设置为用户要求的数值。 初始化程序的主要作用:
1)设置寄存器初值。
2)建立中断向量表。
3)外围部件初始化。
41。DSP有哪些数学库及其它应用软件?
TI公司为了方便客户开发DSP,在它的网站上提供了许多程序的示例和应用程序,如MATH库,FFT,FIR/IIR等,可以在TI的网页免费下载。
42。如何获得DSP专用算法?
TI有许多的Third Party可以通过DSP上的多种算法软件。可以通过TI的网页搜索你所需的算法,找到通过算法的公司,同相应的公司联系。注意这些算法都是要付费的。
43。eXpressDSP是什么?
eXpressDSP是一种实时DSP软件技术,它是一种DSP编程的标准,利用它可以加快你开发DSP软件的速度。以往DSP软件的开发没有任何标准, 不同的人写的程序一般无法连接在一起。DSP软件的调试工具也非常不方便。使得DSP软件的开发往往滞后于硬件的开发。 eXpressDSP集成了CCS(Code Composer Studio)开发平台,DSP BIOS实时软件平台,DSP算法标准和第三方支持四部分。利用该技术,可以使你的软件调试,软件进程管理,软件的互通及算法的 获得,都便的容易。这样就 可以加快你的软件开发进程。
1)CCS是eXpressDSP的基础,因此你必须首 先拥有CCS软 件。
2)DSP BIOS是eXpressDSP的基本平台,你必须学会所有DSP BIOS。
3)DSP算法标准可以保证你的程序可以方便的同其它利用eXpressDSP技术的程序连接在一起。 同时也保证你的程序的延续性。
44。为什么要用DSP?
3G技术和internate的发展,要求处理器的速度越来越高,体积越来越小,DSP的发展正好能满足这一发展的要求。因为,传 统的其它处理器都有不同 的缺陷。MCU的速度较慢;CPU体积较大,功耗较高;嵌入CPU的成本较高。 DSP的发展,使得在许多速度要求较高,算法较复 杂的场合,取代MCU或其它处理器,而成本有可能更低。