STPS3150
Datasheet
150 V, 3 A power Schottky rectifier
Features
•
•
•
•
•
Negligible switching losses
Low forward voltage drop for higher efficiency and extended battery life
Surface mount miniature package
Low thermal resistance
ECOPACK2
component
Applications
•
•
•
•
•
LED Lighting
Battery charger
DC / DC converter
Notebook adapter
Switching diode
Description
150 V power Schottky rectifier are suited for switch mode power supplies on up to 24
V rails and high frequency converters.
Packaged in axial, SMB, SMA Flat Notch and SMB Flat, the
STPS3150
is ideal for
use in consumer and computer applications like TV, STB, PC and DVD where low
drop forward voltage is required to reduce power dissipation.
Product status
STPS3150
Product summary
Symbol
I
F(AV)
V
RRM
T
j(max.)
V
F(typ.)
Value
3A
150 V
175 °C
0.63 V
DS3283
-
Rev 7
-
October 2019
For further information contact your local STMicroelectronics sales office.
www.st.com
STPS3150
Characteristics
1
Characteristics
Table 1.
Absolute ratings (limiting values at 25 °C, unless otherwise specified)
Symbol
V
RRM
Repetitive peak reverse voltage
SMA Flat Notch
I
F(AV)
Average forward current, δ = 0.5, square wave
SMB
SMB Flat
DO-201AD
SMA Flat Notch
I
FSM
Surge non repetitive forward current
SMB
SMB Flat
DO-201AD
P
ARM
T
stg
T
j
Repetitive peak avalanche power
Storage temperature range
Maximum operating junction temperature
(1)
t
p
= 10 µs, T
j
= 125 °C
t
p
= 10 ms sinusoidal
T
L
= 130 °C
T
L
= 130 °C
T
L
= 150 °C
T
L
= 140 °C
75
80
80
100
210
-65 to +175
+175
W
°C
°C
A
3
A
Parameter
Value
150
Unit
V
1. (dP
tot
/dT
j
) < (1/R
th(j-a)
) condition to avoid thermal runaway for a diode on its own heatsink.
Table 2.
Thermal resistance parameter
Symbol
Parameter
SMA Flat Notch
R
th(j-l)
Junction to lead
SMB
SMB Flat
Junction to lead, lead length = 10 mm
DO-201AD
Max. value
20
20
10
15
°C/W
Unit
For more information, please refer to the following application note :
•
AN5088 : Rectifiers thermal management, handling and mounting recommendations
Table 3.
Static electrical characteristics
Symbol
I
R
(1)
Parameter
Reverse leakage current
Test conditions
T
j
= 25 °C
T
j
= 125 °C
T
j
= 25 °C
V
F
(2)
Forward voltage drop
T
j
= 125 °C
T
j
= 25 °C
T
j
= 125 °C
1. Pulse test: t
p
= 5 ms, δ < 2%
2. Pulse test: t
p
= 380 µs, δ < 2%
V
R
= V
RM
Min.
-
-
-
-
-
-
Typ.
0.4
0.6
0.78
0.63
0.85
0.70
Max.
2.0
2.0
0.82
0.67
0.89
0.75
V
Unit
µA
mA
I
F
= 3 A
I
F
= 6 A
DS3283
-
Rev 7
page 2/16
STPS3150
Characteristics
To evaluate the conduction losses, use the following equation:
P = 0.59 x I
F(AV)
+ 0.027 x I
F2(RMS)
For more information, please refer to the following application notes related to the power losses :
•
AN604: Calculation of conduction losses in a power rectifier
•
AN4021: Calculation of reverse losses on a power diode
DS3283
-
Rev 7
page 3/16
STPS3150
Characteristics (curves)
1.1
Characteristics (curves)
Figure 1.
Average forward power dissipation versus
average forward current
Figure 2.
Average forward current versus ambient
temperature (δ = 0.5)
3.5
3.0
I
F(AV)
(A)
R
th(j-a)
=R
th(j-l)
2.5
PF(AV)(W)
= 0.05
= 0.1
= 0.2
= 0.
=1
2.0
2.5
SMB-Flat
DO-201AD
1.5
2.0
1.5
SMA-Flat Notch, SMB
1.0
T
0.5
1.0
0.5
T
0.0
0.0
IF(AV)(A)
0.5
1.0
1.5
2.0
2.5
=tp/T
3.0
tp
3.5
0.0
0
δ
=tp/T
25
tp
50
T
amb
(°C)
75
100
125
150
17 5
Figure 3.
Normalized avalanche power derating versus
pulse duration (T
j
= 125 °C)
P
ARM
(t p )
P
ARM
(10 µs)
1
Figure 4.
Relative variation of thermal impedance junction
to ambient versus pulse duration (SMB)
1.0
0.9
0.8
0.7
Zth(j-a)/Rth(j-a)
SMB
0.1
0.6
0.5
0.4
0.01
0.3
0.2
0.1
Single pulse
tp(s)
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
0.001
t
p
(µs)
1
10
100
1000
0.0
1.E-02
Figure 5.
Relative variation of thermal impedance junction
Figure 6.
Relative variation of thermal impedance junction
to lead versus pulse duration (SMB flat)
to ambient versus pulse duration (DO-201AD)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
1.E-04
1.E-03
1.E-02
Single pulse
Zth(j-l)/Rth(j-l)
SMBflat
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
tp(s)
1.E-01
1.E+00
1.E+01
Zth(j-a)/Rth(j-a)
DO-201AD
Single pulse
tp(s)
1.E+00
1.E+01
1.E+02
1.E+03
0.1
0.0
1.E-01
DS3283
-
Rev 7
page 4/16
STPS3150
Characteristics (curves)
Figure 7.
Reverse leakage current versus reverse voltage
applied (typical values)
1.E+04
IR(µA)
Figure 8.
Junction capacitance versus reverse voltage
applied (typical values)
1000
C(pF)
F = 1 MHZ
V
OSC
= 30 mV
RMS
Tj = 25 °C
1.E+03
Tj = 150 °C
Tj = 125 °C
1.E+02
Tj = 100 °C
Tj = 75 °C
Tj = 50 °C
100
1.E+01
1.E+00
1.E-01
Tj = 25 °C
V
R
(V)
1.E-02
0
25
50
75
100
125
150
10
1
10
V
R
(V)
100
1000
Figure 9.
Forward voltage drop versus forward current
100
I
F
(A)
Tj = 125 °C
(maximum values)
Figure 10.
Thermal resistance junction to ambient versus
copper surface under each lead (SMA Flat Notch)
R
th(j-a)
(°C/W)
200
Epoxy printed circuit board FR4, copper thickness: 35 µm
SMA Flat Notch
Tj = 125 °C
(typical values)
150
Tj = 25 °C
(maximum values)
10
100
50
V
F
(V)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
S
(Cu)
(cm²)
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
1
0.0
Figure 11.
Thermal resistance junction to ambient versus
copper surface under each lead (SMB)
R
th(j-a)
(°C/W)
200
Epoxy p ri nted ci rcui t board FR4, coppe r t hi ckness: 35 µm
Figure 12.
Thermal resistance junction to ambient versus
copper surface under each lead (SMB flat)
R
th(j-a)
(°C/W)
Epoxy printed circuit board FR4, e
Cu
= 35 µm
150
SMB flat
200
SMB
150
100
100
50
50
S
(Cu)
(cm²)
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
S
Cu
(cm²)
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
DS3283
-
Rev 7
page 5/16