首页 > 器件类别 >

89HPES48H12ZABRI

48-Lane 12-Port PCI Express System Interconnect Switch

厂商名称:IDT(艾迪悌)

厂商官网:http://www.idt.com/

下载文档
89HPES48H12ZABRI 在线购买

供应商:

器件:89HPES48H12ZABRI

价格:-

最低购买:-

库存:点击查看

点击购买

文档预览
48-Lane 12-Port PCI Express®
System Interconnect Switch
®
89HPES48H12
Data Sheet
Device Overview
The 89HPES48H12 is a member of the IDT PRECISE™ family of
PCI Express® switching solutions. The PES48H12 is a 48-lane, 12-port
system interconnect switch optimized for PCI Express packet switching
in high-performance applications, supporting multiple simultaneous
peer-to-peer traffic flows. Target applications include servers, storage,
communications, and embedded systems.
Features
High Performance PCI Express Switch
– Twelve maximum switch ports
Six main ports each of which consists of 8 SerDes
Each x8 main port can further bifurcate to 2 x4-ports
– Forty-eight 2.5 Gbps embedded SerDes
Supports pre-emphasis and receive equalization on per-port
basis
– Delivers 192 Gbps (24 GBps) of aggregate switching capacity
– Low-latency cut-through switch architecture
– Support for Max Payload Size up to 2048 bytes
– Supports two virtual channels and eight traffic classes
– PCI Express Base Specification Revision 1.1 compliant
Flexible Architecture with Numerous Configuration Options
– Port arbitration schemes utilizing round robin algorithms
– Virtual channels arbitration based on priority
– Automatic per port link width negotiation to x8, x4, x2 or x1
– Supports automatic lane reversal on all ports
– Supports automatic polarity inversion on all lanes
– Supports locked transactions, allowing use with legacy soft-
ware
– Ability to load device configuration from serial EEPROM
– Ability to control device via SMBus
Highly Integrated Solution
– Requires no external components
– Incorporates on-chip internal memory for packet buffering and
queueing
– Integrates forty-eight 2.5 Gbps embedded full duplex SerDes,
8B/10B encoder/decoder (no separate transceivers needed)
Reliability, Availability, and Serviceability (RAS) Features
– Redundant upstream port failover capability
– Supports optional PCI Express end-to-end CRC checking
– Internal end-to-end parity protection on all TLPs ensures data
integrity even in systems that do not implement end-to-end
CRC (ECRC)
Block Diagram
x8/x4/x2/x1
x8/x4/x2/x1
x8/x4/x2/x1
SerDes
DL/Transaction Layer
SerDes
DL/Transaction Layer
SerDes
DL/Transaction Layer
Route Table
Port
Arbitration
12-Port Switch Core
Frame Buffer
Scheduler
DL/Transaction Layer
DL/Transaction Layer
DL/Transaction Layer
SerDes
SerDes
SerDes
x8/x4/x2/x1
x8/x4/x2/x1
x8/x4/x2/x1
48 PCI Express Lanes
Up to 6 x8 ports or 12 x4 Ports
Figure 1 Internal Block Diagram
IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.
1 of 48
2011 Integrated Device Technology, Inc.
October 3, 2011
DSC 6925
IDT 89HPES48H12 Data Sheet
– Supports optional PCI Express Advanced Error Reporting
– Supports PCI Express Hot-Plug
Compatible with Hot-Plug I/O expanders used on PC
motherboards
– Supports Hot-Swap
Power Management
– Supports PCI Power Management Interface specification,
Revision 1.1 (PCI-PM)
Supports powerdown modes at the link level (L0, L0s, L1,
L2/L3 Ready and L3) and at the device level (D0, D3
hot
)
– Unused SerDes disabled
Testability and Debug Features
– Built in SerDes Pseudo-Random Bit Stream (PRBS) generator
– Ability to read and write any internal register via the SMBus
– Ability to bypass link training and force any link into any mode
– Provides statistics and performance counters
Thirty-two General Purpose Input/Output pins
– Each pin may be individually configured as an input or output
– Each pin may be individually configured as an interrupt input
– Some pins have selectable alternate functions
Packaged in a 35mm x 35mm 1156-ball Flip Chip BGA with
1mm ball spacing
Product Description
Utilizing standard PCI Express interconnect, the PES48H12 provides
the most efficient system interconnect switching solution for applications
requiring high throughput, low latency, and simple board layout with a
minimum number of board layers. It provides 192 Gbps of aggregated,
full-duplex switching capacity through 48 integrated serial lanes, using
proven and robust IDT technology. Each lane provides 2.5 Gbps of
bandwidth in both directions and is fully compliant with PCI Express
Base specification 1.1.
The PES48H12 is based on a flexible and efficient layered architec-
ture. The PCI Express layers consist of SerDes, Physical, Data Link and
Transaction layers. The PES48H12 can operate either as a store and
forward switch or a cut-through switch and is designed to switch memory
and I/O transactions. It supports eight Traffic Classes (TCs) and two
Virtual Channels (VCs) with sophisticated resource management to
enable efficient switching and I/O connectivity.
SMBus Interface
The PES48H12 contains two SMBus interfaces. The slave interface
provides full access to the configuration registers in the PES48H12,
allowing every configuration register in the device to be read or written
by an external agent. The master interface allows the default configura-
tion register values of the PES48H12 to be overridden following a reset
with values programmed in an external serial EEPROM. The master
interface is also used by an external Hot-Plug I/O expander.
Six pins make up each of the two SMBus interfaces. These pins
consist of an SMBus clock pin, an SMBus data pin, and 4 SMBus
address pins. In the slave interface, these address pins allow the SMBus
address to which the device responds to be configured. In the master
interface, these address pins allow the SMBus address of the serial
configuration EEPROM from which data is loaded to be configured. The
SMBus address is set up on negation of PERSTN by sampling the
corresponding address pins. When the pins are sampled, the resulting
address is assigned as shown in Table 1.
Non-bifurcated
x8
x8
Fully Bifurcated
x4
x4
x4
x4
3 2
x8
1 0
11
x8
10
2
1
0
4
5
6 7
x8
3
4
11
10
9
x4
x4
x4
x4
x4
8 9
x8
5
6
x4
7
x4
8
x4
Figure 2 Port Configuration Examples
Note:
The configurations in the above diagram show the maximum port widths. The PES48H12 can negotiate to narrower port widths —
x4, x2, or x1.
2 of 48
October 3, 2011
IDT 89HPES48H12 Data Sheet
Bit
1
2
3
4
5
6
7
Slave
SMBus
Address
SSMBADDR[1]
SSMBADDR[2]
SSMBADDR[3]
0
SSMBADDR[5]
1
1
Master
SMBus
Address
MSMBADDR[1]
MSMBADDR[2]
MSMBADDR[3]
MSMBADDR[4]
1
0
1
Table 1 Master and Slave SMBus Address Assignment
As shown in Figure 3, the master and slave SMBuses may be used in a unified or split configuration. In the unified configuration, shown in Figure
3(a), the master and slave SMBuses are tied together and the PES48H12 acts both as a SMBus master as well as a SMBus slave on this bus. This
requires that the SMBus master or processor that has access to PES48H12 registers supports SMBus arbitration. In some systems, this SMBus
master interface may be implemented using general purpose I/O pins on a processor or micro controller, and may not support SMBus arbitration. To
support these systems, the PES48H12 may be configured to operate in a split configuration as shown in Figure 3(b).
In the split configuration, the master and slave SMBuses operate as two independent buses and thus multi-master arbitration is never required.
The PES48H12 supports reading and writing of the serial EEPROM on the master SMBus via the slave SMBus, allowing in system programming of
the serial EEPROM.
PES48H12
Processor
SMBus
Master
Serial
EEPROM
...
Other
SMBus
Devices
PES48H12
Processor
SMBus
Master
...
Other
SMBus
Devices
SSMBCLK
SSMBDAT
MSMBCLK
MSMBDAT
SSMBCLK
SSMBDAT
MSMBCLK
MSMBDAT
Serial
EEPROM
(a) Unified Configuration and Management Bus
(b) Split Configuration and Management Buses
Figure 3 SMBus Interface Configuration Examples
Hot-Plug Interface
The PES48H12 supports PCI Express Hot-Plug on each downstream port (ports 1 through 11). To reduce the number of pins required on the
device, the PES48H12 utilizes an external I/O expander, such as that used on PC motherboards, connected to the SMBus master interface. Following
reset and configuration, whenever the state of a Hot-Plug output needs to be modified, the PES48H12 generates an SMBus transaction to the I/O
expander with the new value of all of the outputs. Whenever a Hot-Plug input changes, the I/O expander generates an interrupt which is received on
the IOEXPINTN input pin (alternate function of GPIO) of the PES48H12. In response to an I/O expander interrupt, the PES48H12 generates an
SMBus transaction to read the state of all of the Hot-Plug inputs from the I/O expander.
General Purpose Input/Output
The PES48H12 provides 32 General Purpose I/O (GPIO) pins that may be individually configured as general purpose inputs, general purpose
outputs, or alternate functions. Some GPIO pins are shared with other on-chip functions. These alternate functions may be enabled via software,
SMBus slave interface, or serial configuration EEPROM.
3 of 48
October 3, 2011
IDT 89HPES48H12 Data Sheet
Pin Description
The following tables lists the functions of the pins provided on the PES48H12. Some of the functions listed may be multiplexed onto the same pin.
The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low)
level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level. Differ-
ential signals end with a suffix “N” or “P.” The differential signal ending in “P” is the positive portion of the differential pair and the differential signal
ending in “N” is the negative portion of the differential pair.
Signal
PE0RP[3:0]
PE0RN[3:0]
PE0TP[3:0]
PE0TN[3:0]
PE1RP[3:0]
PE1RN[3:0]
PE1TP[3:0]
PE1TN[3:0]
PE2RP[3:0]
PE2RN[3:0]
PE2TP[3:0]
PE2TN[3:0]
PE3RP[3:0]
PE3RN[3:0]
PE3TP[3:0]
PE3TN[3:0]
PE4RP[3:0]
PE4RN[3:0]
PE4TP[3:0]
PE4TN[3:0]
PE5RP[3:0]
PE5RN[3:0]
PE5TP[3:0]
PE5TN[3:0]
PE6RP[3:0]
PE6RN[3:0]
PE6TP[3:0]
PE6TN[3:0]
PE7RP[3:0]
PE7RN[3:0]
Type
I
O
I
Name/Description
PCI Express Port 0 Serial Data Receive.
Differential PCI Express receive pairs for
port 0. Port 0 is the upstream port.
PCI Express Port 0 Serial Data Transmit.
Differential PCI Express transmit pairs for
port 0. Port 0 is the upstream port.
PCI Express Port 1 Serial Data Receive.
Differential PCI Express receive pairs for
port 1. When port 0 is merged with port 1, these signals become port 0 receive pairs
for lanes 4 through 7.
PCI Express Port 1 Serial Data Transmit.
Differential PCI Express transmit pairs for
port 1. When port 0 is merged with port 1, these signals become port 0 transmit pairs
for lanes 4 through 7.
PCI Express Port 2 Serial Data Receive.
Differential PCI Express receive pairs for
port 2.
PCI Express Port 2 Serial Data Transmit.
Differential PCI Express transmit pairs for
port 2.
PCI Express Port 3 Serial Data Receive.
Differential PCI Express receive pairs for
port 3. When port 2 is merged with port 3, these signals become port 2 receive pairs
for lanes 4 through 7.
PCI Express Port 3 Serial Data Transmit.
Differential PCI Express transmit pairs for
port 2. When port 2 is merged with port 3, these signals become port 2 transmit pairs
for lanes 4 through 7.
PCI Express Port 4 Serial Data Receive.
Differential PCI Express receive pairs for
port 4.
PCI Express Port 4 Serial Data Transmit.
Differential PCI Express transmit pairs for
port 4.
PCI Express Port 5 Serial Data Receive.
Differential PCI Express receive pairs for
port 5. When port 4 is merged with port 5, these signals become port 4 receive pairs
for lanes 4 through 7.
PCI Express Port 5 Serial Data Transmit.
Differential PCI Express transmit pairs for
port 5. When port 4 is merged with port 5, these signals become port 4 transmit pairs
for lanes 4 through 7.
PCI Express Port 6 Serial Data Receive.
Differential PCI Express receive pairs for
port 6.
PCI Express Port 6 Serial Data Transmit.
Differential PCI Express transmit pairs for
port 6.
PCI Express Port 7 Serial Data Receive.
Differential PCI Express receive pairs for
port 7. When port 6 is merged with port 7, these signals become port 6 receive pairs
for lanes 4 through 7.
Table 2 PCI Express Interface Pins (Part 1 of 2)
O
I
O
I
O
I
O
I
O
I
O
I
4 of 48
October 3, 2011
IDT 89HPES48H12 Data Sheet
Signal
PE7TP[3:0]
PE7TN[3:0]
PE8RP[3:0]
PE8RN[3:0]
PE8TP[3:0]
PE8TN[3:0]
PE9RP[3:0]
PE9RN[3:0]
PE9TP[3:0]
PE9TN[3:0]
PE10RP[3:0]
PE10RN[3:0]
PE10TP[3:0]
PE10TN[3:0]
PE11RP[3:0]
PE11RN[3:0]
PE11TP[3:0]
PE11TN[3:0]
REFCLKM
Type
O
Name/Description
PCI Express Port 7 Serial Data Transmit.
Differential PCI Express transmit pairs for
port 7. When port 6 is merged with port 7, these signals become port 6 transmit pairs
for lanes 4 through 7.
PCI Express Port 8 Serial Data Receive.
Differential PCI Express receive pairs for
port 8.
PCI Express Port 8 Serial Data Transmit.
Differential PCI Express transmit pairs for
port 8.
PCI Express Port 9 Serial Data Receive.
Differential PCI Express receive pairs for
port 9. When port 8 is merged with port 9, these signals become port 8 receive pairs
for lanes 4 through 7.
PCI Express Port 9 Serial Data Transmit.
Differential PCI Express transmit pairs for
port 9. When port 8 is merged with port 9, these signals become port 8 transmit pairs
for lanes 4 through 7.
PCI Express Port 10 Serial Data Receive.
Differential PCI Express receive pairs for
port 10.
PCI Express Port 10 Serial Data Transmit.
Differential PCI Express transmit pairs
for port 10.
PCI Express Port 11 Serial Data Receive.
Differential PCI Express receive pairs for
port 11. When port 10 is merged with port 11, these signals become port 10 receive
pairs for lanes 4 through 7.
PCI Express Port 11 Serial Data Transmit.
Differential PCI Express transmit pairs
for port 11. When port 10 is merged with port 11, these signals become port 10 trans-
mit pairs for lanes 4 through 7.
PCI Express Reference Clock Mode Select.
This signal selects the frequency of the
reference clock input.
0x0 - 100 MHz
0x1 - 125 MHz
PCI Express Reference Clock.
Differential reference clock pair input. This clock is
used as the reference clock by on-chip PLLs to generate the clocks required for the
system logic and on-chip SerDes. The frequency of the differential reference clock is
determined by the REFCLKM signal.
Table 2 PCI Express Interface Pins (Part 2 of 2)
I
O
I
O
I
O
I
O
I
REFCLKP[3:0]
REFCLKN[3:0]
I
Signal
MSMBADDR[4:1]
MSMBCLK
Type
I
I/O
Name/Description
Master SMBus Address.
These pins determine the SMBus address of the serial
EEPROM from which configuration information is loaded.
Master SMBus Clock.
This bidirectional signal is used to synchronize transfers on the
master SMBus. It is active and generating the clock only when the EEPROM or I/O
Expanders are being accessed.
Master SMBus Data.
This bidirectional signal is used for data on the master SMBus.
Table 3 SMBus Interface Pins (Part 1 of 2)
MSMBDAT
I/O
5 of 48
October 3, 2011
查看更多>
参数对比
与89HPES48H12ZABRI相近的元器件有:89HPES48H12、89HPES48H12ZABL。描述及对比如下:
型号 89HPES48H12ZABRI 89HPES48H12 89HPES48H12ZABL
描述 48-Lane 12-Port PCI Express System Interconnect Switch 48-Lane 12-Port PCI Express System Interconnect Switch 48-Lane 12-Port PCI Express System Interconnect Switch
热门器件
热门资源推荐
器件捷径:
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR SS ST SU SV SW SX SY SZ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 TA TB TC TD TE TF TG TH TI TJ TK TL TM TN TO TP TQ TR TS TT TU TV TW TX TY TZ U0 U1 U2 U3 U4 U6 U7 U8 UA UB UC UD UE UF UG UH UI UJ UK UL UM UN UP UQ UR US UT UU UV UW UX UZ V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 VA VB VC VD VE VF VG VH VI VJ VK VL VM VN VO VP VQ VR VS VT VU VV VW VX VY VZ W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 WA WB WC WD WE WF WG WH WI WJ WK WL WM WN WO WP WR WS WT WU WV WW WY X0 X1 X2 X3 X4 X5 X7 X8 X9 XA XB XC XD XE XF XG XH XK XL XM XN XO XP XQ XR XS XT XU XV XW XX XY XZ Y0 Y1 Y2 Y4 Y5 Y6 Y9 YA YB YC YD YE YF YG YH YK YL YM YN YP YQ YR YS YT YX Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z8 ZA ZB ZC ZD ZE ZF ZG ZH ZJ ZL ZM ZN ZP ZR ZS ZT ZU ZV ZW ZX ZY
需要登录后才可以下载。
登录取消