operated at 2.7 V single supply, except from 0°C to −40°C, where a minimum of 3 V is needed.
Table 1.
Parameter
DC CHARACTERISTICS—RHEOSTAT
MODE (All RDACs)
Resistor Differential Nonlinearity
2
Resistor Integral Nonlinearity
2
Nominal Resistor Tolerance
Resistance Temperature Coefficient
Wiper Resistance
Nominal Resistance Match
DC CHARACTERISTICS—POTENTIOMETER
DIVIDER MODE (All RDACs)
Resolution
Differential Nonlinearity
3
Integral Nonlinearity
3
Voltage Divider Temperature Coefficient
Full-Scale Error
Zero-Scale Error
RESISTOR TERMINALS
Terminal Voltage Range
4
Capacitance Ax, Bx
5
Capacitance Wx
5
Common-Mode Leakage Current
5, 6
DIGITAL INPUTS AND OUTPUTS
Input Logic High
Input Logic Low
Input Logic High
Input Logic Low
Input Logic High
Input Logic Low
Output Logic High (SDO, RDY)
Output Logic Low
Input Current
Input Capacitance
5
POWER SUPPLIES
Single-Supply Power Range
Dual-Supply Power Range
Positive Supply Current
Negative Supply Current
EEMEM Store Mode Current
Symbol
Conditions
Min
Typ
1
Max
Unit
R-DNL
R-INL
∆R
AB
/R
AB
(∆R
AB
/R
AB
)/∆T × 10
6
R
W
R
AB1
/R
AB2
R
WB
R
WB
Dx = 0x3FF
I
W
= 1 V/R
WB
, V
DD
= 5 V, code = 0x200
I
W
= 1 V/R
WB
, V
DD
= 3 V, code = 0x200
Code = 0x3FF, T
A
= 25°C
−2
−4
−30
35
50
200
±0.1
+2
+4
+30
100
LSB
LSB
%
ppm/°C
Ω
Ω
%
N
DNL
INL
(∆V
W
/V
W
)/∆T × 10
6
V
WFSE
V
WZSE
V
A
, V
B
, V
W
C
A
, C
B
C
W
I
CM
V
IH
V
IL
V
IH
V
IL
V
IH
V
IL
V
OH
V
OL
I
IL
C
IL
V
DD
V
DD
/V
SS
I
DD
I
DD
I
SS
I
DD
(store)
I
SS
(store)
−2
−4
Code = half scale
Code = full scale
Code = zero scale
15
−6
0
V
SS
f = 1 MHz, measured to GND,
code = half-scale
f = 1 MHz, measured to GND,
code = half-scale
V
W
= V
DD
/2
With respect to GND, V
DD
= 5 V
With respect to GND, V
DD
= 5 V
With respect to GND, V
DD
= 3 V
With respect to GND, V
DD
= 3 V
With respect to GND, V
DD
= +2.5 V,
V
SS
= −2.5 V
With respect to GND, V
DD
= +2.5 V,
V
SS
= −2.5 V
R
PULL-UP
= 2.2 kΩ to 5 V (see Figure 36)
I
OL
= 1.6 mA, V
LOGIC
= 5 V (see Figure 36)
V
IN
= 0 V or V
DD
2.4
11
80
0.01
10
+2
+4
0
4
V
DD
Bits
LSB
LSB
ppm/°C
LSB
LSB
V
pF
pF
±2
μA
V
V
V
V
V
V
V
V
μA
pF
V
V
μA
μA
μA
mA
mA
0.8
2.1
0.6
2.0
0.5
4.9
0.4
±2.25
5
V
SS
= 0 V
V
IH
= V
DD
or V
IL
= GND, T
A
= 25°C
V
IH
= V
DD
or V
IL
= GND
V
IH
= V
DD
or V
IL
= GND,
V
DD
= +2.5 V, V
SS
= −2.5 V
V
IH
= V
DD
or V
IL
= GND,
V
SS
= GND, I
SS
≈ 0
V
DD
= +2.5 V, V
SS
= −2.5 V
Rev. C | Page 3 of 28
3.0
±2.25
2
3.5
3.5
35
−35
5.5
±2.75
4.5
6.0
6.0
AD5235
Parameter
EEMEM Restore Mode Current
7
Symbol
I
DD
(restore)
I
SS
(restore)
P
DISS
P
SS
BW
THD
W
Conditions
V
IH
= V
DD
or V
IL
= GND,
V
SS
= GND, I
SS
≈ 0
V
DD
= +2.5 V, V
SS
= −2.5 V
V
IH
= V
DD
or V
IL
= GND
∆V
DD
= 5 V ± 10%
−3 dB, V
DD
/V
SS
= ±2.5 V,
R
AB
= 25 kΩ/250 kΩ
V
A
= 1 V rms, V
B
= 0 V, f = 1 kHz
V
A
= 1 V rms, V
B
= 0 V, f = 1 kHz,
R
AB
= 50 kΩ, 100 kΩ
V
A
= V
DD
, V
B
= 0 V,
V
W
= 0.50% error band,
Code 0x000 to Code 0x200,
R
AB
= 25 kΩ/250 kΩ
R
AB
= 25 kΩ/250 kΩ, T
A
= 25°C
V
A
= V
DD
, V
B
= 0 V, measured V
W1
with
V
W2
making full-scale change
V
DD
= V
A1
= +2.5 V, V
SS
= V
B1
= −2.5 V,
measured V
W1
with V
W2
= 5 V p-p @
f = 1 kHz, Code 1 = 0x200, Code 2 =
0x3FF, R
AB
= 25 kΩ/250 kΩ
Min
0.3
−0.3
Typ
1
3
−3
18
0.002
125/12
0.05
0.045
4/36
Max
9
−9
50
0.01
Unit
mA
mA
μW
%/%
kHz
%
%
μs
Power Dissipation
8
Power Supply Sensitivity
5
DYNAMIC CHARACTERISTICS
5, 9
Bandwidth
Total Harmonic Distortion
V
W
Settling Time
t
S
Resistor Noise Density
Crosstalk (C
W1
/C
W2
)
Analog Crosstalk
e
N_WB
C
T
C
TA
20/64
90/21
−81/−62
nV/√Hz
nV-s
dB
1
2
Typicals represent average readings at 25°C and V
DD
= 5 V.
Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper
positions. R-DNL measures the relative step change from ideal between successive tap positions. I
W
~ 50 μA for V
DD
= 2.7 V and I
W
~ 400 μA for V
DD
= 5 V (see Figure 25).
3
INL and DNL are measured at V
W
with the RDAC configured as a potentiometer divider similar to a voltage output DAC. V
A
= V
DD
and V
B
= V
SS
. DNL specification limits of
±1 LSB maximum are guaranteed monotonic operating conditions (see Figure 26).
4
Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-
referenced bipolar signal adjustment.
5
Guaranteed by design and not subject to production test.
6
Common-mode leakage current is a measure of the dc leakage from any Terminal A, Terminal B, or Terminal W to a common-mode bias level of V
DD
/2.
7
EEMEM restore mode current is not continuous. Current is consumed while EEMEM locations are read and transferred to the RDAC register (see Figure 22). To
minimize power dissipation, a NOP, Instruction 0 (0x0) should be issued immediately after Instruction 1 (0x1).
1、I2C初始化 关于I2C初始化的流程,标准库中的注释写的非常清晰: * 1. Enable peripheral clock using CLK_PeripheralClockConfig(CLK_Peripheral_I2Cx, * ENABLE) function (Refer to the product datasheet for the availabl...[详细]
这里给出的电路可以安装在装有扬声器的盒子中,以形成一个方便的麦克风放大器。该设备可供教师,导游,讲师等在拥挤或嘈杂的环境中使用。 该电路基于音频功率放大器 IC TDA 7052 设计,该 IC 可在 6V电源下提供 1.2 W 的最大功率输出。来自麦克风的音频信号由基于Q1(BC 547)的放大器预放大,并提供给IC1(引脚2)的输入端。POTR5 充当音量控制。电容C3用于绕过通过高频,...[详细]