D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
a
FEATURES
+3 V Supply Voltage
Baseband Serial Port (BSPORT)
Differential IRx and QRx
ADC Channels
Two 15-Bit Sigma-Delta A/D Converters
FIR Digital Filters
64 dB SNR
Output Word Rate 270.83 kHz
Twos Complement Coding
On-Chip Offset Calibration
Power-Down Mode
Auxiliary D/A Converter
Auxiliary Serial Port (ASPORT)
On-Chip Voltage Reference
Low Power
28-Lead TSSOP/28-Lead SOIC
APPLICATIONS
GSM Basestations
Pagers
FUNCTIONAL BLOCK DIAGRAM
DVDD2
DVDD1 DGND
AGND
AVDD1
Dual Sigma-Delta ADC
with Auxiliary DAC
AD7729
GENERAL DESCRIPTION
This monolithic 3 V CMOS device is a low power, two-channel,
input port with signal conditioning. The receive path is com-
posed of two high performance sigma-delta ADCs with digital
filtering. A common bandgap reference feeds the ADCs.
A control DAC is included for such functions as AFC. The auxil-
iary functions can be accessed via the auxiliary port (ASPORT).
This device is available in a 28-lead TSSOP package or a
28-lead SOIC package.
AVDD2
ASDI
ASDIFS
ASCLK
ASDO
ASDOFS
ASE
AUXILIARY
SERIAL
INTERFACE
10-BIT
AUXDAC
AUXDAC
BSDI
BSDIFS
BSCLK
BSDO
BSDOFS
BSE
BASEBAND
SERIAL
INTERFACE
OFFSET
ADJUST
DECIMATION
FIR DIGITAL
FILTER
IRxP
MODULATOR
IRxN
OFFSET
ADJUST
DECIMATION
FIR DIGITAL
FILTER
QRxP
MODULATOR
QRxN
DIVIDE BY 2
MCLK
RxON
RESETB
MUX
REFERENCE
REFCAP
REFOUT
REV. 0
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
World Wide Web Site: http://www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 1998
V 10%; DVDD1 = DVDD2
AD7729–SPECIFICATIONS
1
(AVDD1T==AVDD2to=T+3 unless otherwise noted) = +3 V
0 V, f = 13 MHz; RxPOWER1 = 0; RxPOWER0 = 1; MCLKDIV = 0;
T
CLK
A
MIN
MAX
10%; DGND = AGND =
Parameter
REFERENCE
REFCAP
Absolute Voltage, V
REFCAP
REFCAP TC
REFOUT
Absolute Voltage, V
REFOUT
REFOUT TC
ADC CHANNEL SPECIFICATIONS
Resolution
ADC Signal Range
V
BIAS
Differential Signal Range
Single-Ended Signal Range
Input Sample Rate
Output Word Rate
DC Accuracy
Precalibration Offset Error
Post Calibration Offset Error
Post Calibration Offset Error TC
Input Resistance (DC)
Input Capacitance
Dynamic Specifications
Dynamic Range
Signal to (Noise + Distortion)
Gain Error
Gain Match Between Channels
Filter Settling Time
Frequency Response
0 kHz–70 kHz
85 kHz
96 kHz
135 kHz
>170 kHz
Absolute Group Delay
Group Delay Between Channels
(0 kHz–96 kHz)
Coding
AUXILIARY CONVERTER
2
Resolution
Output Range
Code 000
Offset Error
Code 3FF
Gain Error
DC Accuracy
Integral Nonlinearity
Differential Nonlinearity
Update Rate
Load Resistance
Load Capacitance
I
SINK
Full-Scale Settling Time
LSB Settling Time
Coding
AD7729A
Units
Test Conditions/Comments
1.3
±
5%
50
1.3
±
10%
50
15
2 V
REFCAP
V
REFCAP
/2 to (AVDD – V
REFCAP
/2)
V
REFCAP
to (AVDD – V
REFCAP
)
V
BIAS
±
V
REFCAP
/2
V
BIAS
±
V
REFCAP
13
270.83
±
45
±
10
50
1.23
10
67
64
±
1
±
0.5
±
0.2
47
±
0.05
–1
–3.0
–55
–55
23
5
Twos Complement
V min/max
ppm/°C typ
V min/max
ppm/°C typ
Bits
V p-p
Volts
Volts
V min/max
V min/max
MSPS
kHz
mV typ
mV max
µV/°C
typ
MΩ typ
pF typ
dB typ
dB min
dB max
dB max
dB max
µs
typ
dB max/min
dB max
dB max
dB max
dB max
µs
typ
ns typ
0.1
µF
Capacitor Required from REFCAP to AGND
0.1
µF
Capacitor Required from REFOUT to AGND
RxON = 1
Differential
Single-Ended
For Both Positive and Negative Analog Inputs
For Positive Analog Inputs; Negative Analog Inputs = V
BIAS
TC = Temperature Coefficient
Input Frequency = 67.7 kHz
Input Frequency = 67.7 kHz, wrt 1.3 V
Input Frequency = 67.7 kHz, wrt V
REFCAP
Does Not Include Input Antialias RC Circuit
10
2/32
×
V
REFCAP
±
35
2 V
REFCAP
–60
+100
Bits
V
mV max
V
mV min
mV max
Maximum Output for Specified Accuracy = AVDD –
0.2 V or 2.6 V, Whichever Is Lower
±
4
±
2
540
10
50
50
4
2
Binary
LSB max
LSB max
kHz max
kΩ min
pF max
µA
typ
µs
typ
µs
typ
Guaranteed Monotonic to 9 Bits
See Figure 1
See Figure 1
–2–
REV. 0
AD7729
Parameter
LOGIC INPUTS
V
INH
, Input High Voltage
V
INL
, Input Low Voltage
I
IH
, Input Current
C
IN
, Input Capacitance
LOGIC OUTPUTS
V
OH
, Output High Voltage
V
OL
, Output Low Voltage
I
OZL
, Low Level Output Three-State Leakage Current
I
OZH
, High Level Output Three-State Leakage Current
POWER SUPPLIES
AVDD1, AVDD2
DVDD1, DVDD2
I
DD
AD7729A
Units
Test Conditions/Comments
V
DD
– 0.8
0.8
10
10
V
DD
– 0.4
0.4
10
10
V min
V max
µA
max
pF max
V min
V max
µA
max
µA
max
V min/max
V min/max
See Table I
|I
OUT
| < 100
µA
|I
OUT
| < 100
µA
2.7/3.3
2.7/3.3
NOTES
1
Operating Temperature Range: –40°C to +105°C. Therefore, T
MIN
= –40°C and T
MAX
= +105°C.
2
During power-down, the AUXDAC has an output resistance of 30 kΩ approximately to AGND.
Specifications subject to change without notice.
C
L
50pF
R
L
10k
Figure 1. AUXDAC Load Equivalent Circuit
Table I. Current Summary (AVDD1 = AVDD2 = DVDD1 = DVDD2 = +3.3 V, RxPOWER1 = 0, RxPOWER0 = 1)
Internal
Analog Digital
Current Current
(typ)
(typ)
4.2
2
0.7
1
0.0001
0.0001
3.4
0.86
0.0001
0.0001
0.04
0.0001
External
Interface Total
Current Current
(typ)
(max)
4
0.1
0.002
0.002
0.015
0.005
13.5
3.4
1.1
1.7
0.1
0.05
Conditions
ADCs On Only
AUXDAC On Only
REFCAP On Only
REFCAP and
REFOUT On Only
All Sections Off
All Sections Off
BSE
1
0
0
0
0
0
ASE
0
1
0
0
0
0
MCLK
ON
YES
YES
NO
NO
YES
NO
Comments
REFOUT Enabled, BSCLK = MCLK
REFOUT Disabled, ASCLK = MCLK/48
REFOUT Disabled
REFOUT Enabled
MCLK Active Levels Equal to 0 V and DVDD
Digital Inputs Static and Equal to 0 V or
DVDD
The above values are in mA.
REV. 0
–3–
AD7729
Table II. Receive Section Signal Ranges
Table III. Auxiliary Section Signal Ranges
Baseband Section
V
REFCAP
V
REFOUT
ADC
ADC Signal Range
V
BIAS
Differential Input
Single-Ended Input
Signal Range
Differential
Single-Ended
Signal Range
1.3 V
±
5%
1.3 V
±
10%
2 V
REFCAP
V
REFCAP
/2 to (AVDD1 – V
REFCAP
/2)
V
REFCAP
to (AVDD1 – V
REFCAP
)
V
BIAS
±
V
REFCAP
/2
V
BIAS
±
V
REFCAP
AUXDAC
Output Code
Code 000
Code 3FF
Signal Range
2/32
×
V
REFCAP
2 V
REFCAP
TIMING CHARACTERISTICS
Parameter
AUXILIARY FUNCTIONS
Clock Signals
t
1
t
2
t
3
t
4
t
5
t
6
t
10
t
11
t
12
t
13
t
14
t
15
t
16
t
17
Receive Section
Clock Signals
t
7
t
8
t
9
t
18
t
19
t
20
t
21
t
22
t
23
t
24
t
25
(AVDD1 = AVDD2 = +3 V 10%; DVDD1 = DVDD2 = +3 V
T
A
= T
MIN
to T
MAX
, unless otherwise noted)
Units
Description
10%; AGND = DGND = 0 V;
Limit at
T
A
= –40 C to +105 C
76
30.4
30.4
t
1
0.4
×
t
1
0.4
×
t
1
20
10
15
0
0
15
10
t
4
+ 15
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns max
ns min
ns min
ns max
ns min
ns min
See Figure 2.
MCLK Period
MCLK Width Low
MCLK Width High
ASCLK Period. See Figures 4 and 6.
ASCLK Width Low
ASCLK Width High
ASDI/ASDIFS Setup Before ASCLK Low
ASDI/ASDIFS Hold After ASCLK Low
ASDOFS Delay from ASCLK High
ASDOFS Hold After ASCLK High
ASDO Hold After ASCLK High
ASDO Delay from ASCLK High
ASDIFS Low to ASDI LSB Read by ASPORT
Interval Between Consecutive ASDIFS Pulses
See Figures 5 and 7.
BSCLK Period
BSCLK Width Low
BSCLK Width High
BSDI/BSDIFS Setup Before BSCLK Low
BSDI/BSDIFS HoldAfter BSCLK Low
BSDOFS Delay from BSCLK High
BSDOFS Hold After BSCLK High
BSDO Hold After BSCLK High
BSDO Delay from BSCLK High
BSDIFS Low to ASDI LSB Read by BSPORT
Interval Between Consecutive BSDIFS Pulses
t
1
0.4
×
t
1
0.4
×
t
1
20
10
15
0
0
15
10
t
7
+ 15
ns min
ns min
ns min
ns min
ns min
ns max
ns min
ns min
ns max
ns min
ns min
ASCLK = MCLK/(2
×
ASCLKRATE). ASCLKRATE can have a value from 0 . . . 1023. When ASCLKRATE = 0, ASCLK = 13 MHz.
BSCLK = MCLK/(2
×
BSCLKRATE). BSCLKRATE can have a value from 0 . . . 1023. When BSCLKRATE = 0, BSCLK = 13 MHz.
Specifications subject to change without notice.
–4–
REV. 0