D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
a
FEATURES
High Speed
250 MHz –3 dB Bandwidth (G = +1)
3000 V/ s Slew Rate
21 ns Settling Time to 0.1%
1.8 ns Rise Time for 2 V Step
Low Power
3.5 mA/Amp Power Supply Current (35 mW/Amp)
Single Supply Operation
Fully Specified for +5 V Supply
Good Video Specifications (R
L
= 150 , G = +2)
Gain Flatness 0.1 dB to 30 MHz
0.04% Differential Gain Error
0.10 Differential Phase Error
Low Distortion
–78 dBc THD at 5 MHz
–61 dBc THD at 20 MHz
High Output Current of 50 mA
Available in a 14-Lead Plastic DIP and SOIC
APPLICATIONS
Image Scanners
Active Filters
Video Switchers
Special Effects
PRODUCT DESCRIPTION
Quad 3000 V/ s, 35 mW
Current Feedback Amplifier
AD8004
CONNECTION DIAGRAM
Plastic DIP (N) and
SOIC (R) Packages
OUTPUT 1
–IN 2
+IN 3
+V
S
4
+IN 5
–IN 6
OUTPUT 7
2
3
1
4
14 OUTPUT
13 –IN
12 +IN
AD8004
(
TOP VIEW)
11 –V
S
10 +IN
9 –IN
8 OUTPUT
30 MHz while offering differential gain and phase error of
0.04% and 0.10°. This makes the AD8004 suitable for video
electronics such as cameras and video switchers.
The AD8004 offers low power of 3.5 mA/amplifier and can run
on a single +4 V to +12 V power supply, while being capable of
delivering up to 50 mA of load current. All this is offered in a
small 14-lead plastic DIP or 14-lead SOIC package. These
features make this amplifier ideal for portable and battery pow-
ered applications where size and power are critical.
The outstanding bandwidth of 250 MHz along with 3000 V/µs
of slew rate make the AD8004 useful in many general purpose,
high speed applications where dual power supplies of up to
±
6 V and single supplies from 4 V to 12 V are needed. The
AD8004 is available in the industrial temperature range of –40°C
to +85°C.
0.04
0.03
0.02
0.01
0.00
–0.01
–0.02
–0.03
–0.04
1
ST
0.12
0.10
0.08
0.06
0.04
0.02
0.00
–0.02
–0.04
1
ST
2
ND
3
RD
4
TH
5
TH
6
TH
7
TH
DIFF PHASE – Degrees
2
ND
3
RD
4
TH
5
TH
6
TH
7
TH
The
AD8004 is a quad, low power, high speed amplifier designed
to operate on single or dual supplies. It utilizes a current feed-
back architecture and features high slew rate of 3000 V/µs
making the AD8004 ideal for handling large amplitude pulses.
Additionally, the AD8004 provides gain flatness of 0.1 dB to
+1
NORMALIZED FREQUENCY RESPONSE – dB
0
G = +2
V
IN
= 50mV rms
R
L
= 100
R
F
= 1.10k
R PACKAGE
–1
5V
S
+5V
S
–3
–4
+5V
S
5V
S
–5
–6
–7
–8
1
10
40
FREQUENCY – MHz
100
–9
500
–2
DIFF GAIN – %
NORMALIZED FLATNESS – dB
+0.1
0
–0.1
–0.2
–0.3
–0.4
–0.5
80 IRE
R
L
= 150
V
S
= 5V
R
F
= 1.21k
8
TH
9
TH
10
TH
11
TH
80 IRE
R
L
= 150
V
S
= 5V
R
F
= 1.21k
8
TH
9
TH
10
TH
11
TH
Figure 1. Frequency Response and Flatness, G = +2
Figure 2. Differential Gain/Differential Phase
REV. B
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
World Wide Web Site: http://www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 1999
AD8004–SPECIFICATIONS
(@ T = + 25 C, V =
A
S
5 V, R
L
= 100
, unless otherwise noted)
Min
AD8004A
Typ
Max
185
250
Parameter
DYNAMIC PERFORMANCE
–3 dB Bandwidth, N Package
Bandwidth for 0.1 dB Flatness
Conditions
G = +2, R
F
= 698
Ω
G = +1
, R
F
= 806
Ω
G = +2
G = +2, V
O
= 4 V Step
G = –2, V
O
= 4 V Step
G = +2, V
O
= 2 V Step
G = +2, V
O
= 2 V Step
f
C
= 5 MHz, V
O
= 2 V p-p, R
L
= 1 kΩ
f = 5 MHz, G = +2, R
L
= 1 kΩ
f = 5 MHz, G = +2, R
L
= 1 kΩ
f = 10 kHz
f = 10 kHz, +In
–In
NTSC, G = +2, R
L
= 150
Ω,
R
F
= 1.21 kΩ
NTSC, G = +2, R
L
= 150
Ω,
R
F
= 1.21 kΩ
NTSC, G = +2, R
L
= 1 kΩ, R
F
= 1.21 kΩ
NTSC, G = +2, R
L
= 1 kΩ, R
F
= 1.21 kΩ
Units
MHz
MHz
Slew Rate
Settling Time to 0.1%
Rise & Fall Time (10% to 90%)
NOISE/HARMONIC PERFORMANCE
Total Harmonic Distortion
Crosstalk, R Package, Worst Case
Crosstalk, N Package, Worst Case
Input Voltage Noise
Input Current Noise
Differential Gain Error
Differential Phase Error
Differential Gain Error
Differential Phase Error
DC PERFORMANCE
Input Offset Voltage
30
3000
2000
21
1.8
–78
–69
–64
1.5
38
38
0.04
0.10
0.01
0.04
1.0
1.5
15
35
40
3.5
5
90
110
110
120
MHz
V/µs
V/µs
ns
ns
dBc
dB
dB
nV/√Hz
pA/√Hz
pA/√Hz
%
Degree
%
Degree
mV
mV
µV/°C
±µA
±µA
±µA
±µA
kΩ
kΩ
MΩ
Ω
pF
±
V
dB
µA/V
µA/V
±
V
mA
mA
±
6.0
17
20
V
mA
mA
dB
µA/V
µA/V
T
MIN
–T
MAX
Offset Drift
–Input Bias Current
T
MIN
–T
MAX
+Input Bias Current
Open-Loop Transresistance
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
Common-Mode Rejection Ratio
Offset Voltage
–Input Current
+Input Current
OUTPUT CHARACTERISTICS
Output Voltage Swing
Output Current
Short Circuit Current
POWER SUPPLY
Operating Range
Total Quiescent Current
Power Supply Rejection Ratio
–Input Current
+Input Current
Specifications subject to change without notice.
T
MIN
–T
MAX
V
O
=
±
2.5 V
T
MIN
–T
MAX
+Input
–Input
+Input
V
CM
=
±
2.5 V
V
CM
=
±
2.5 V, T
MIN
–T
MAX
V
CM
=
±
2.5 V, T
MIN
–T
MAX
R
L
= 150
Ω
170
290
220
2
50
1.5
3.2
52
58
1
12
3.9
50
180
100
±
2.0
T
MIN
–T
MAX
∆V
S
=
±
2 V
T
MIN
–T
MAX
T
MIN
–T
MAX
56
14
16
62
0.5
4
–2–
REV. B
(@ T
A
= + 25 C, V
S
= +5 V, R
L
= 100
Parameter
DYNAMIC PERFORMANCE
–3 dB Bandwidth, N Package
Bandwidth for 0.1 dB Flatness
, unless otherwise noted)
Conditions
G = +2, R
F
= 698
Ω
G = +1, R
F
= 806
Ω
G = +2
G = +2, V
O
= 2 V Step
G = +2, V
O
= 2 V Step
G = +2, V
O
= 2 V Step
f
C
= 5 MHz, V
O
= 2 V p-p, R
L
= 1 kΩ
f = 5 MHz, G = +2, R
L
= 1 kΩ
f = 5 MHz, G = +2, R
L
= 1 kΩ
f = 10 kHz
f = 10 kHz, +In
–In
NTSC, G = +2, R
L
= 150
Ω,
R
F
= 1.21 kΩ
NTSC, G = +2, R
L
= 150
Ω,
R
F
= 1.21 kΩ
NTSC, G = +2, R
L
= 1 kΩ, R
F
= 1.21 kΩ
NTSC, G = +2, R
L
= 1 kΩ, R
F
= 1.21 kΩ
Min
AD8004A
Typ
Max
150
200
AD8004
Units
MHz
MHz
Slew Rate
Settling Time to 0.1%
Rise & Fall Time (10% to 90%)
NOISE/HARMONIC PERFORMANCE
Total Harmonic Distortion
Crosstalk, R Package, Worst Case
Crosstalk, N Package, Worst Case
Input Voltage Noise
Input Current Noise
Differential Gain Error
Differential Phase Error
Differential Gain Error
Differential Phase Error
DC PERFORMANCE
Input Offset Voltage
30
1100
24
2.3
–65
–69
–64
1.5
38
38
0.06
0.25
0.01
0.08
1.0
1
15
20
35
2.5
3
80
100
100
115
MHz
V/µs
ns
ns
dBc
dB
dB
nV/√Hz
pA/√Hz
pA/√Hz
%
Degree
%
Degree
mV
mV
µV/°C
±µA
±µA
±µA
±µA
kΩ
kΩ
MΩ
Ω
pF
V
dB
µA/V
µA/V
V
mA
mA
V
mA
mA
dB
µA/V
µA/V
T
MIN
–T
MAX
Offset Drift
–Input Bias Current
T
MIN
–T
MAX
+Input Bias Current
Open Loop Transresistance
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
Common-Mode Rejection Ratio
Offset Voltage
–Input Current
+Input Current
OUTPUT CHARACTERISTICS
Output Voltage Swing
Output Current
Short Circuit Current
POWER SUPPLY
Operating Range
Total Quiescent Current
Power Supply Rejection Ratio
–Input Current
+Input Current
Specifications subject to change without notice.
T
MIN
–T
MAX
V
O
= +1.5 V to +3.5 V
T
MIN
–T
MAX
+Input
–Input
+Input
140
230
170
2
50
1.5
3.2
V
CM
= +1 V to +3 V
V
CM
= +1 V to +3 V, T
MIN
–T
MAX
V
CM
= +1 V to +3 V, T
MIN
–T
MAX
R
L
= 150
Ω
52
57
2
15
0.9 to 4.1
50
95
0, +4
T
MIN
–T
MAX
∆V
S
= +1 V, V
CM
= +2.5 V
T
MIN
–T
MAX
T
MIN
–T
MAX
13
14.5
62
1
6
+12
14
15.5
56
REV. B
–3–
AD8004
ABSOLUTE MAXIMUM RATINGS
1
MAXIMUM POWER DISSIPATION
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 V
Internal Power Dissipation
2
Plastic DIP Package (N) . . . . . . . . . Observe Derating Curves
Small Outline Package (R) . . . . . . . . Observe Derating Curves
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . .
±
V
S
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . .
±
2.5 V
Output Short Circuit Duration
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C
Operating Temperature Range (A Grade) . . . – 40°C to +85°C
Lead Temperature Range (Soldering 10 sec) . . . . . . . . +300°C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
Specification is for device in free air:
14-Lead Plastic DIP Package:
θ
JA
= 90°C/W
14-Lead SOIC Package:
θ
JA
= 140°C/W
The maximum power that can be safely dissipated by the
AD8004 is limited by the associated rise in junction tempera-
ture. The maximum safe junction temperature for plastic
encapsulated devices is determined by the glass transition tem-
perature of the plastic, approximately +150°C. Exceeding this
limit temporarily may cause a shift in parametric performance
due to a change in the stresses exerted on the die by the package.
Exceeding a junction temperature of +175°C for an extended
period can result in device failure.
While the AD8004 is internally short circuit protected, this may
not be sufficient to guarantee that the maximum junction tem-
perature is not exceeded under all conditions. To ensure proper
operation, it is necessary to observe the maximum power derat-
ing curves (shown below in Figure 3).
2.0
T
J
= +150 C
14-LEAD PLASTIC DIP
PACKAGE
1.5
ORDERING GUIDE
Model
AD8004AN
AD8004AR-14
AD8004AR-14-REEL
AD8004AR-14-REEL7
Temperature
Range
– 40°C to +85°C
– 40°C to +85°C
– 40°C to +85°C
– 40°C to +85°C
Package
Description
14-Lead Plastic DIP
14-Lead SOIC
13" Tape and Reel
7" Tape and Reel
Package
Option
N-14
R-14
R-14
R-14
MAXIMUM POWER DISSIPATION – Watts
1.0
14-LEAD SOIC
PACKAGE
0.5
0
–50 –40 –30 –20 –10 0 10 20 30 40 50 60 70
AMBIENT TEMPERATURE – C
80 90
Figure 3. Maximum Power Dissipation vs. Temperature
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although the AD8004 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
–4–
REV. B