Agilent CNY17-x
Phototransistor Optocoupler
High Collector-Emitter
Voltage Type
Data Sheet
Description
The CNY17 contains a light emitting
diode optically coupled to a photo-
transistor. It is packaged in a 6-pin
DIP package and available in wide-
lead spacing option and lead bend
SMD option. Collector-emitter
voltage is above 70 V. Response
time, t
r
, is typically 5
µs
and
minimum CTR is 40% at input
current of 10 mA.
Ordering Information
Specify part number followed by
Option Number (if desired).
CNY17-3-XXX
Option Number
060
W00
300
500
=
=
=
=
VDE0884 Option
0.4" Lead Spacing Option
Lead Bend SMD Option
Tape and Reel Packaging
Option
Functional Diagram
PIN NO. AND INTERNAL
CONNECTION DIAGRAM
6
5
4
ANODE
1
+
I
F
6
BASE
Features
• High collector-emitter voltage
(V
CEO
= 70 V)
• High input-output isolation voltage
(V
iso
= 5000 Vrms)
• Current Transfer Ratio
(CTR: min. 40% at I
F
= 10 mA,
V
CE
= 5 V)
• Response time (t
r
: typ., 5
µs
at
V
CC
= 10 V, I
C
= 2 mA, R
L
= 100
Ω)
• Dual-in-line package
• UL approved
• CSA approved
• VDE approved
• Options available:
– Leads with 0.4" (10.16 mm)
spacing (W00)
– Leads bends for surface
mounting (300)
– Tape and reel for SMD (500)
– VDE 0884 approvals (060)
Applications
• System appliances, measuring
instruments
• Signal transmission between
circuits of different potentials and
impedances
• Feedback circuit in power supply
Schematic
V
F
CATHODE
–
2
I
C
5
COLLECTOR
1
1. ANODE
2. CATHODE
3. NC
2
3
4. EMITTER
5. COLLECTOR
6. BASE
4
EMITTER
CAUTION:
It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
Package Outline Drawings
TYPE NUMBER
6
5
4
OPTION CODE
FOR OPTION 060
ONLY
3.5 ± 0.5
(0.138)
7.3 ± 0.5
(0.287)
7.62 ± 0.3
(0.3)
A CNY17-
YYWW
PIN ONE DOT
DATE CODE
1
2
V
6.5 ± 0.5
(0.256)
2.8 ± 0.5
(0.110)
3.3 ± 0.5
(0.13)
0.5
TYP.
(0.02)
3
2.54 ± 0.25
(0.1)
0.5 ± 0.1
(0.02)
0.35 +0.15/-0.10
(0.14)
7.62 ~ 9.98
DIMENSIONS IN MILLIMETERS AND (INCHES)
Package Outline – Option W00
7.3 ± 0.5
(0.287)
7.62 ± 0.3
(0.3)
3.5 ± 0.5
(0.138)
6.5 ± 0.5
(0.256)
2.8 ± 0.5
(0.110)
0.5 ± 0.1
(0.02)
2.3 ± 0.5
(0.09)
6.9 ± 0.5
(0.272)
0.35 +0.15/-0.10
(0.014)
10.16 ± 0.5
(0.4)
2.54 ± 0.25
(0.1)
DIMENSIONS IN MILLIMETERS AND (INCHES)
Package Outline – Option 300
7.3 ± 0.5
(0.287)
7.62 ± 0.3
(0.3)
3.5 ± 0.5
(0.138)
6.5 ± 0.5
(0.256)
1.2 ± 0.1
(0.047)
2.54 ± 0.25
(0.1)
0.35 ± 0.25
(0.014)
1.0 ± 0.25
(0.039)
10.16 ± 0.3
(0.4)
0.35 +0.15/-0.10
(0.014)
DIMENSIONS IN MILLIMETERS AND (INCHES)
2
Absolute Maximum Ratings
Storage Temperature, T
S
Operating Temperature, T
A
Lead Solder Temperature, max.
(1.6 mm below seating plane)
Average Forward Current, I
F
Reverse Input Voltage, V
R
Input Power Dissipation, P
I
Collector Current, I
C
Collector-Emitter Voltage, V
CEO
Emitter-Collector Voltage, V
ECO
Collector-Base Voltage, V
CBO
Collector Power Dissipation
Total Power Dissipation
Isolation Voltage, V
iso
(AC for 1 minute, R.H. = 40 ~ 60%)
–55˚C to +150˚C
–55˚C to +100˚C
260˚C for 10 s
60 mA
6V
100 mW
150 mA
70 V
6V
70 V
150 mW
250 mW
5000 Vrms
Electrical Specifications (T
A
= 25˚C)
Parameter
Forward Voltage
Reverse Current
Terminal Capacitance
Collector Dark Current
Collector-Emitter Breakdown Voltage
Emitter-Collector Breakdown Voltage
Collector-Base Breakdown Voltage
Collector Current
*Current Transfer Ratio CNY17-1
CNY17-2
CNY17-3
CNY17-4
Collector-Emitter Saturation Voltage
Response Time (Rise)
Response Time (Fall)
Isolation Resistance
Floating Capacitance
Symbol
V
F
I
R
C
t
I
CEO
BV
CEO
BV
ECO
BV
CBO
I
C
CTR
Min.
–
–
–
–
70
6
70
4
40
63
100
160
–
–
–
1 x 10
11
–
Typ.
1.4
–
–
–
–
–
–
–
–
–
–
–
–
5
5
–
–
Max.
1.7
10
100
50
–
–
–
32
80
125
200
320
0.3
10
10
–
2
Units
V
µA
pF
nA
V
V
V
mA
%
Test Conditions
I
F
= 60 mA
V
R
= 6 V
V = 0, f = 1 MHz
V
CE
= 10 V
I
C
= 0.1 mA, I
F
= 0
I
E
= 10
µA,
I
F
= 0
I
C
= 0.1 mA, I
F
= 0
I
F
= 10 mA
V
CE
= 5 V
V
CE(sat)
t
r
t
f
R
iso
C
f
V
µs
µs
Ω
pF
I
F
= 10 mA, I
C
= 2.5 mA
V
CE
= 5 V, I
C
= 10 mA
R
L
= 100
Ω
DC 500 V
40 ~ 60% R.H.
V = 0, f = 1 MHz
* CTR =
I
C
x 100%
I
F
3
P
C
– COLLECTOR POWER DISSIPATION – mW
80
I
F
– FORWARD CURRENT – mA
200
2
0
-2
R
L
= 200
Ω
-4
-6
-8
-10
0.5 1
R
L
= 150
Ω
R
L
= 75
Ω
60
160
150
40
100
20
50
0
-55
-25
0
25
50
75
100 125
0
-55
VOLTAGE GAIN AV – dB
I
F
= 10 mA
V
CC
= 5 V
T
A
= 25°C
-25
0
25
50
75
100 125
2
5 10 20
50 100 200 500
T
A
– AMBIENT TEMPERATURE – °C
T
A
– AMBIENT TEMPERATURE – °C
f – FREQUENCY – kHz
Figure 1. Forward current vs. temperature.
Figure 2. Collector power dissipation vs.
temperature.
Figure 3. Frequency response.
CTR – CURRENT TRANSFER RATIO – %
500
I
F
– FORWARD CURRENT – mA
200
180
160
140
120
100
80
60
40
20
0
0
45
I
C
– COLLECTOR CURRENT – mA
V
CE
= 5 V
T
A
= 25°C
T
A
= 75°C
200
100
50
20
10
5
2
1
0
0.5
1.0
1.5
2.0
2.5
3.0
T
A
= 50°C
T
A
= 25°C
T
A
= 0°C
T
A
= -25°C
40 I
F
= 30 mA
35
30
25
20
15
10
5
0
0
2
I
F
= 10 mA
I
F
= 5 mA
I
F
= 2 mA
4
6
I
F
= 20 mA
T
A
= 25°C
P
C
(MAX.)
R
BE
=
100 kΩ
500 kΩ
2
5
10
20
50
8
10
V
F
– FORWARD VOLTAGE – V
I
F
– FORWARD CURRENT – mA
V
CE
– COLLECTOR-EMITTER VOLTAGE – V
Figure 4. Forward current vs. forward voltage.
Figure 5. Current transfer ratio vs. forward
current.
Figure 6. Collector current vs. collector-
emitter voltage.
RELATIVE CURRENT TRANSFER RATIO – %
I
CEO
– COLLECTOR DARK CURRENT – A
150
V
CE(SAT.)
– COLLECTOR-EMITTER
SATURATION VOLTAGE – V
I
F
= 10 mA
V
CE
= 5 V
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0
-55
I
F
= 10 mA
I
C
= 2.5 mA
10
-6
10
-7
10
-8
10
-9
10
-10
10
-11
10
-12
10
-13
-30
0
20
40
60
80
100
V
CE
= 10 V
100
50
0
-55
-25
0
25
50
75
100
-25
0
25
50
75
100
T
A
– AMBIENT TEMPERATURE – °C
T
A
– AMBIENT TEMPERATURE – °C
T
A
– AMBIENT TEMPERATURE – °C
Figure 7. Relative current transfer ratio vs.
temperature.
Figure 8. Collector-emitter saturation
voltage vs. temperature.
Figure 9. Collector dark current vs.
temperature.
4
10
V
CE(SAT.)
– COLLECTOR-EMITTER
SATURATION VOLTAGE – V
RESPONSE TIME – µs
5
I
F
= 10 mA
V
CC
= 5 V
T
A
= 25°C
tr
tf
6
T
A
= 25°C
5
4
3
2
1
0
I
C
= 0.5 mA
I
C
= 1 mA
I
C
= 2 mA
I
C
= 3 mA
I
C
= 5 mA
2
1
0.5
0.02
0.05
0.1
0.2
0.5
0
2.5
5.0
7.5
10.0
12.5
R
L
– LOAD RESISTANCE – kΩ
I
F
– FORWARD CURRENT – mA
Figure 10. Response time vs. load resistance.
Figure 11. Collector-emitter saturation
voltage vs. forward current.
Test Circuit for Response Time
Test Circuit for Frequency Response
V
CC
V
CC
R
D
INPUT
R
L
OUTPUT
R
D
R
L
OUTPUT
~
INPUT
OUTPUT
10%
90%
t
d
t
r
t
s
t
f
5