D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
LM348
Differential Input
Operational Amplifier
The LM348 is a true quad MC1741. Integrated on a single monolithic chip
are four independent, low power operational amplifiers which have been
designed to provide operating characteristics identical to those of the
industry standard MC1741, and can be applied with no change in circuit
performance. In addition, the total supply current for all four amplifiers is
comparable to the supply current of a single MC1741. Other features include
input offset currents and input bias currents which are much less than the
MC1741 industry standard.
The LM348 can be used in applications where amplifier matching or high
packing density is important. Other applications include high impedance
buffer amplifiers and active filter amplifiers.
•
Each Amplifier is Functionally Equivalent to the MC1741
DIFFERENTIAL INPUT
OPERATIONAL AMPLIFIER
SEMICONDUCTOR
TECHNICAL DATA
•
•
•
•
•
•
•
14
1
Low Input Offset and Input Bias Currents
Class AB Output Stage Eliminates Crossover Distortion
Pin Compatible with MC3403 and LM324
True Differential Inputs
Internally Frequency Compensated
Short Circuit Protection
Low Power Supply Current (0.6 mA/Amplifier)
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
PIN CONNECTIONS
Out 1
1
2
14
Out 4
Inputs 4
Representative Schematic Diagram
(1/4 of Circuit Shown)
Inputs 1
3
*
)
)
*
1
4
*
)
)
*
13
12
11
10
VCC
VCC
Inputs 2
Noninverting
Input
39 k
Inverting
Input
30 pF
4
5
6
VEE
Inputs 3
2
3
9
8
4.5 k
25
7.5 k
Output
(Top View)
50
Out 2
7
Out 3
ORDERING INFORMATION
10 k
50 k
1.0 k
5.0 k
50 k
50
VEE
Device
LM348D
Operating
Temperature Range
TA = 0° to +70°C
Package
SO–14
2–56
MOTOROLA ANALOG IC DEVICE DATA
LM348
MAXIMUM RATINGS
(TA = +25°C, unless otherwise noted.)
Rating
Power Supply Voltage
Input Differential Voltage
Input Common Mode Voltage
Output Short Circuit Duration
Operating Ambient Temperature Range
Storage Temperature Range
Junction Temperature
Symbol
VCC
VEE
VID
VICM
tSC
TA
Tstg
TJ
Value
+18
–18
±36
±18
Continuous
0 to +70
–55 to +125
150
°C
°C
°C
Unit
Vdc
V
V
ELECTRICAL CHARACTERISTICS
(VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristic
Input Offset Voltage (RS
≤
10 k)
Input Offset Current
Input Bias Current
Input Resistance
Common Mode Input Voltage Range
Large Signal Voltage Gain (RL
≥
2.0 k, VO =
±10
V)
Channel Separation (f = 1.0 Hz to 20 kHz)
Common Mode Rejection (RS
≤
10 k)
Supply Voltage Rejection (RS
≤
10 k)
Output Voltage Swing
(RL
≥
10 k)
(RL
≥
2.0 k)
Output Short Circuit Current
Supply Current (All Amplifiers)
Small Signal Bandwidth (AV = 1)
Phase Margin (AV = 1)
Slew Rate (AV = 1)
ISC
ID
BW
φm
SR
Symbol
VIO
IIO
IIB
ri
VICR
AVOL
–
CMR
PSR
VO
±12
±10
–
–
–
–
–
±13
±12
25
2.4
1.0
60
0.5
–
–
–
4.5
–
–
–
mA
mA
MHz
Degrees
V/µs
Min
–
–
–
0.8
±12
25
–
70
77
Typ
1.0
4.0
30
2.5
–
160
–120
90
96
Max
6.0
50
200
–
–
–
–
–
–
Unit
mV
nA
MΩ
V
V/mV
dB
dB
V
ELECTRICAL CHARACTERISTICS
(VCC = +15 V, VEE = –15 V, TA = *Thigh to Tlow, unless otherwise noted.)
Characteristic
Input Offset Voltage (RS
≤
10 kΩ)
Input Offset Current
Input Bias Current
Common Mode Input Voltage Range
Large Signal Voltage Gain (RL
≥
2 k, VO =
±10
V)
Common Mode Rejection (RS
≤
10 k)
Supply Voltage Rejection (RS
≤
10 k)
Output Voltage Swing
(RL
≥
10 k)
(RL
≥
2 k)
* Thigh = 70°C. Tlow = 0°C.
NOTE:
Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted or the maximum
junction temperature will be exceeded.
Symbol
VIO
IIO
IIB
VICR
AVOL
CMR
PSR
VO
Min
–
–
–
±12
15
70
77
±12
±10
Typ
–
–
–
–
–
90
96
±13
±12
Max
7.5
100
400
–
–
–
–
–
–
Unit
mV
nA
V
V/mV
dB
V
MOTOROLA ANALOG IC DEVICE DATA
2–57
LM348
Figure 1. Power Bandwidth
(Large Signal Swing versus Frequency)
28
VO, OUTPUT VOLTAGE (Vpp )
24
20
16
12
8.0
4.0
0
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
Voltage Follower
THD < 5%
A vol, VOLTAGE GAIN (dB)
120
100
80
60
40
20
0
–20
1.0
10
100
1.0 k
10 k
100 k
1.0 M
10 M
Figure 2. Open Loop Frequency Response
f, FREQUENCY (Hz)
Figure 3. Positive Output Voltage Swing
versus Load Resistance
15
14
13
12
11
10
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
±15
V Supplies
±12
V
±
9.0 V
±
6.0 V
–15
–14
–13
–12
–11
–10
–9.0
–8.0
–7.0
–6.0
–5.0
–4.0
–3.0
–2.0
–1.0
Figure 4. Negative Output Voltage Swing
versus Load Resistance
VO, OUTPUT VOLTAGE (Vpp )
VO, OUTPUT VOLTAGE (Vpp )
±15
V Supplies
±12
V
±
9.0 V
±
6.0 V
100
200
500 700 1.0 k
2.0 k
5.0 k 7.0 k 10 k
100
200
RL, LOAD RESISTANCE (Ω)
500 700 1.0 k
2.0 k
RL, LOAD RESISTANCE (Ω)
5.0 k 7.0 k 10 k
Figure 5. Output Voltage Swing versus
Load Resistance (Single Supply Operation)
28
26
24
22
20
18
16
14
12
10
8.0
6.0
4.0
2.0
0
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10
RL, LOAD RESISTANCE (kW)
VO, OUTPUT VOLTAGE SWING (Vpp )
30 V
27 V
24 V
21 V
18 V
15 V
12 V
9.0 V
6.0 V
5.0 V
SUPPLY
2–58
MOTOROLA ANALOG IC DEVICE DATA
LM348
Figure 7. Open Loop Voltage Gain
versus Supply Voltage
105
100
A V , VOLTAGE GAIN (dB)
95
90
85
80
75
70
0
2.0
4.0
6.0
8.0
10
12
14
16
18
20
Figure 6. Noninverting Pulse Response
5.0 V/DIV
Output
Input
10
µs/DIV
VCC, |VEE|, SUPPLY VOLTAGES (V)
APPLICATIONS INFORMATION
Figure 8. Voltage Reference
R1
VCC
VCC
R2
–
1/2
Figure 9. Wien Bridge Oscillator
50 k
5.0 k
10 k
VO
Vref
–
1/4
VCC
VO
1
fo =
2π RC
For: fo = 1 kHz
R = 16 kW
C = 0.01
µF
MC1403
2.5 V
+
+
1
Vref = VCC
2
R
R1
VO = 2.5 V (1 +
)
R2
R
C
C
Figure 10. High Impedance Differential Amplifier
1
C R
Figure 11. Comparator with Hysteresis
e1
+
1/4
R
R1
Vref
R2
VOH
+
1/4
Hysteresis
–
a R1
–
1/4
VO
VO
VOL
Vin L Vin H
Vref
R1
eo
Vin
–
+
b R1
–
1/4
1
C R
R
e2
+
eo = C (1 + a + b) (e2 – e1)
R1
Vin L =
R1 + R2 (VOL – Vref) + Vref
R1
Vin H =
(V – V ) + Vref
R1 + R2 OH ref
R1
H=
R1 + R2 (VOH – VOL)
MOTOROLA ANALOG IC DEVICE DATA
2–59