首页 > 器件类别 >

MAX9995

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch

厂商名称:Maxim(美信半导体)

厂商官网:https://www.maximintegrated.com/en.html

下载文档
文档预览
19-3383; Rev 1; 3/11
KIT
ATION
EVALU
BLE
AVAILA
Dual, SiGe, High-Linearity, 1700MHz to 2700MHz
Downconversion Mixer with LO Buffer/Switch
General Description
The MAX9995 dual, high-linearity, downconversion
mixer provides 6.1dB gain, +25.6dBm IIP3, and 9.8dB
NF for WCDMA, TD-SCDMA, LTE, TD-LTE, and
GSM/EDGE base-station applications.
This device integrates baluns in the RF and LO ports, a
dual-input LO selectable switch, an LO buffer, two double-
balanced mixers, and a pair of differential IF output ampli-
fiers. The MAX9995 requires a typical LO drive of 0dBm
and supply current is guaranteed to be below 380mA.
These devices are available in a compact 36-pin TQFN
package (6mm
×
6mm) with an exposed pad. Electrical
performance is guaranteed over the extended tempera-
ture range, from T
C
= -40°C to +85°C.
Features
o
1700MHz to 2700MHz RF Frequency Range
o
1400MHz to 2600MHz LO Frequency Range
o
40MHz to 350MHz IF Frequency Range
6.1dB Conversion Gain
+25.6dBm Input IP3
9.8dB Noise Figure
66dBc 2RF - 2LO Spurious Rejection at
P
RF
= -10dBm
o
Dual Channels Ideal for Diversity Receiver
Applications
o
Integrated LO Buffer
o
Integrated RF and LO Baluns for Single-Ended
Inputs
o
Low -3dBm to +3dBm LO Drive
o
Built-In SPDT LO Switch with 50dB LO1 - LO2
Isolation and 50ns Switching Time
o
44dB Channel-to-Channel Isolation
o
o
o
o
MAX9995
Applications
WCDMA, TD-SCDMA,
and cdma2000
®
3G
Base Stations
LTE and TD-LTE
Base Stations
GSM/EDGE
Base Stations
PHS/PAS Base Stations
Fixed Broadband
Wireless Access
Wireless Local Loop
Private Mobile Radio
Military Systems
Pin Configuration/
Functional Diagram
29 LO_ADJ_M
33 IFM+
Ordering Information
PART
TEMP RANGE
PIN-PACKAGE
MAX9995ETX+
MAX9995ETX+T
T
C
* = -40°C to +85°C 36 TQFN-EP**
T
C
* = -40°C to +85°C 36 TQFN-EP**
TOP VIEW
36 V
CC
31 IND_EXTM
35 IFM_SET
32 IFM-
34 GND
28 N.C.
30 V
CC
RFMAIN
TAPMAIN
GND
V
CC
GND
V
CC
GND
TAPDIV
RFDIV
1
2
3
4
5
6
7
8
9
EXPOSED
PAD*
27
LO2
GND
GND
GND
LOSEL
GND
V
CC
GND
LO1
MAX9995
26
25
24
23
22
21
20
19
+Denotes a lead(PB)-free and RoHS-compliant package.
*T
C
= Case temperature.
**EP
= Exposed pad.
T = Tape and reel.
10
11
12
13
14
15
16
17
LO_ADJ_D
IFD_SET
IFD+
IND_EXTD
V
CC
GND
IFD-
V
CC
N.C.
18
6mm x 6mm TQFN
*EXPOSED PAD ON THE BOTTOM OF THE PACKAGE
cdma2000 is a registered trademark of Telecommunications
Industry Association.
1
________________________________________________________________
Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
Dual, SiGe, High-Linearity, 1700MHz to 2700MHz
Downconversion Mixer with LO Buffer/Switch
MAX9995
ABSOLUTE MAXIMUM RATINGS
V
CC
........................................................................-0.3V to +5.5V
LO1, LO2 to GND ...............................................................±0.3V
IFM_, IFD_, IFM_SET, IFD_SET, LOSEL,
LO_ADJ_M, LO_ADJ_D to GND.............-0.3V to (V
CC
+ 0.3V)
RFMAIN, RFDIV, and LO_ Input Power ..........................+20dBm
RFMAIN, RFDIV Current
(RF is DC shorted to GND through balun) ......................50mA
Continuous Power Dissipation (Note 1) ...............................8.8W
Operating Temperature Range (Note 2) .....T
C
= -40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
Note 1:
Based on junction temperature T
J
= T
C
+ (θ
JC
x V
CC
x I
CC
). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the
Applications Information
section for details. The junction
temperature must not exceed +150°C.
Note 2:
T
C
is the temperature on the exposed pad of the package. T
A
is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
PACKAGE THERMAL CHARACTERISTICS
TQFN
Junction-to-Ambient Thermal Resistance (θ
JA
)
(Note 3, 4) ....................................................................38°C/W
Junction-to-Case Thermal Resistance (θ
JC
)
(Note 1, 4) ...................................................................7.4°C/W
Note 3:
Junction temperature T
J
= T
A
+ (θJ
A
x V
CC
x I
CC
). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 4:
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to
www.maxim-ic.com/thermal-tutorial.
DC ELECTRICAL CHARACTERISTICS
(Typical
Application Circuit,
no input RF or LO signals applied, V
CC
= 4.75V to 5.25V, T
C
= -40°C to +85°C. Typical values are at V
CC
= 5.0V, T
C
= +25°C, unless otherwise noted.)
PARAMETER
Supply Voltage
SYMBOL
V
CC
Total supply current
V
CC
(pin 16)
Supply Current
I
CC
V
CC
(pin 30)
IFM+/IFM- (total of both)
IFD+/IFD- (total of both)
LOSEL Input High Voltage
LOSEL Input Low Voltage
LOSEL Input Current
V
IH
V
IL
I
IL
and I
IH
-10
2
0.8
+10
CONDITIONS
MIN
4.75
TYP
5
332
82
97
70
70
MAX
5.25
380
90
110
90
90
V
V
µA
mA
UNITS
V
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER
RF Frequency Range
LO Frequency Range
IF Frequency Range
LO Drive Level
SYMBOL
f
RF
f
LO
f
IF
P
LO
(Note 5)
(Note 5)
(Note 5)
(Note 5)
CONDITIONS
MIN
1700
1400
40
-3
TYP
MAX
2700
2600
350
+3
UNITS
MHz
MHz
MHz
dBm
2
_______________________________________________________________________________________
Dual, SiGe, High-Linearity, 1700MHz to 2700MHz
Downconversion Mixer with LO Buffer/Switch
AC ELECTRICAL CHARACTERISTICS—f
RF
= 1700MHz TO 2200MHz
(Typical
Application Circuit,
V
CC
= 4.75V to 5.25V, RF and LO ports are driven from 50Ω sources, P
LO
= -3dBm to +3dBm, f
RF
=
1700MHz to 2200MHz, f
LO
= 1400MHz to 2000MHz, f
IF
= 200MHz, with f
RF
> f
LO
, T
C
= -40°C to +85°C. Typical values are at V
CC
=
5.0V, P
LO
= 0dBm, f
RF
= 1900MHz, f
LO
= 1700MHz, f
IF
= 200MHz, and T
C
= +25°C, unless otherwise noted.) (Notes 6, 7)
PARAMETER
Conversion Gain
SYMBOL
G
C
V
CC
= 5.0V,
T
C
= +25°C,
P
LO
= 0dBm,
P
RF
= -10dBm
(Note 8)
CONDITIONS
f
RF
= 1710MHz to 1875MHz
f
RF
= 1850MHz to 1910MHz
f
RF
= 2110MHz to 2170MHz
f
RF
= 1710MHz to 1875MHz
f
RF
= 1850MHz to 1910MHz
f
RF
= 2110MHz to 2170MHz
MIN
TYP
6
6.2
6.1
±0.5
±0.5
±0.5
±0.75
NF
No blockers
present
f
RF
= 1710MHz to 1875MHz
f
RF
= 1850MHz to 1910MHz
f
RF
= 2110MHz to 2170MHz
Noise Figure (with Blocker)
Input 1dB Compression Point
Input Third-Order Intercept Point
2RF - 2LO Spur Rejection
P
1dB
IIP3
2x2
8dBm blocker tone applied to RF port at
2000MHz, f
RF
= 1900MHz, f
LO
= 1710MHz, P
LO
= -3dBm
(Note 8)
(Notes 8, 9)
f
RF
= 1900MHz,
f
LO
= 1700MHz,
f
SPUR
= 1800MHz (Note 8)
f
RF
= 1900MHz,
f
LO
= 1700MHz,
f
SPUR
= 1766.7MHz (Note 8)
f
LO
= 1400MHz to 2000MHz
f
LO
= 1400MHz to 2000MHz
f
LO
= 1400MHz to 2000MHz
f
RF
= 1700MHz to 2200MHz, f
IF
= 200MHz
P
LO1
= 0dBm, P
LO2
= 0dBm (Note 10)
P
RF
= -10dBm, RFMAIN (RFDIV)
power measured at IFDIV (IFMAIN),
relative to IFMAIN (IFDIV),
all unused ports terminated at 50Ω
50% of LOSEL to IF settled to within 2°
LO port selected
LO port unselected
LO driven at 0dBm, RF terminated into 50Ω
(Note 11)
40
P
RF
= -10dBm
P
RF
= -5dBm
P
RF
= -10dBm
P
RF
= -5dBm
70
60
9.5
23
9.7
9.8
9.9
22
12.6
25.6
66
dBc
61
88
dBc
78
-29
-17
-25
37
50.5
dBm
dBm
dBm
dB
dB
dB
dBm
dBm
dB
±1
±1
±1
dB
dB
dB
MAX
UNIT
MAX9995
Gain Variation from Nominal
Gain Variation with Temperature
Noise Figure
3RF - 3LO Spur Rejection
Maximum LO Leakage at RF Port
Maximum 2LO Leakage at RF Port
Maximum LO Leakage at IF Port
Minimum RF-to-IF Isolation
LO1 - LO2 Isolation
Minimum Channel-to-Channel
Isolation
LO Switching Time
RF Return Loss
LO Return Loss
IF Return Loss
3x3
40
44
dB
50
14
18
21
21
ns
dB
dB
dB
_______________________________________________________________________________________
3
Dual, SiGe, High-Linearity, 1700MHz to 2700MHz
Downconversion Mixer with LO Buffer/Switch
MAX9995
AC ELECTRICAL CHARACTERISTICS—fRF = 2540MHz
(Typical
Application Circuit,
RF and LO ports are driven from 50Ω sources, f
RF
> f
LO
, V
CC
= 5.0V, P
RF
= -5dBm, P
LO
= 0dBm, f
RF
=
2540MHz, f
LO
= 2400MHz, f
IF
= 140MHz, T
C
= +25°C, unless otherwise noted.) (Note 7)
PARAMETER
Conversion Gain
Input Third-Order Intercept Point
2RF - 2LO Spurious Response
3RF - 3LO Spurious Response
LO Leakage at IF Port
RF-to-IF Isolation
Channel-to-Channel Isolation
P
RF
= -10dBm, RFMAIN (RFDIV) power
measured at IFDIV (IFMAIN), relative to IFMAIN
(IFDIV), all unused ports terminated at 50Ω
SYMBOL
G
C
IIP3
2x2
3x3
Two tones: f
RF1
= 2540MHz, f
RF2
= 2541MHz,
P
RF
= -5dBm/tone
P
RF
= -10dBm
P
RF
= -5dBm
P
RF
= -10dBm
P
RF
= -5dBm
CONDITIONS
MIN
TYP
5.2
24.6
58
63
72
82
-45
49
48
MAX
UNITS
dB
dBm
dBc
dBc
dBm
dB
dB
Note 5:
Operation outside this frequency band is possible but has not been characterized. See the
Typical Operating Characteristics.
Note 6:
Guaranteed by design and characterization.
Note 7:
All limits reflect losses of external components. Output measurements taken at IF outputs of
Typical Application Circuit.
Note 8:
Production tested.
Note 9:
Two tones 3MHz spacing, -5dBm per tone at RF port.
Note 10:
Measured at IF port at IF frequency. f
LO1
and f
LO2
are offset by 1MHz.
Note 11:
IF return loss can be optimized by external matching components.
Typical Operating Characteristics
(Typical
Application Circuit,
V
CC
= 5.0V, P
RF
= -5dBm, P
LO
= 0dBm, LO is low-side injected for a 200MHz IF, T
C
= +25°C.)
CONVERSION GAIN vs. RF FREQUENCY
MAX9995 toc01
CONVERSION GAIN vs. RF FREQUENCY
6.4
6.3
CONVERSION GAIN (dB)
6.2
6.1
6.0
5.9
5.8
5.7
5.6
5.5
P
LO
= -3dBm to +3dBm
MAX9995 toc02
CONVERSION GAIN vs. RF FREQUENCY
6.4
6.3
CONVERSION GAIN (dB)
6.2
6.1
6.0
5.9
5.8
5.7
5.6
5.5
V
CC
= 5.25V
1700
1800
1900
2000
2100
2200
V
CC
= 5.0V
V
CC
= 4.75V
MAX9995 toc03
8.0
7.5
7.0
CONVERSION GAIN (dB)
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
1700
1800
1900
2000
2100
T
C
= +85°C
T
C
= +25°C
T
C
= -20°C
6.5
6.5
2200
1700
1800
1900
2000
2100
2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
4
_______________________________________________________________________________________
Dual, SiGe, High-Linearity, 1700MHz to 2700MHz
Downconversion Mixer with LO Buffer/Switch
MAX9995
Typical Operating Characteristics (continued)
(Typical
Application Circuit,
V
CC
= 5.0V, P
RF
= -5dBm, P
LO
= 0dBm, LO is low-side injected for a 200MHz IF, T
C
= +25°C.)
INPUT IP3 vs. RF FREQUENCY
MAX9995 toc04
INPUT IP3 vs. RF FREQUENCY
MAX9995 toc05
INPUT IP3 vs. RF FREQUENCY
V
CC
= 5.25V
MAX9995 toc06
26.8
T
C
= +85°C
26.4
26.0
IIP3 (dBm)
26.6
26.4
26.2
IIP3 (dBm)
26.0
25.8
25.6
P
LO
= -3dBm
25.4
25.2
P
LO
= 0dBm
P
LO
= +3dBm
27.0
26.6
26.2
IIP3 (dBm)
25.8
25.4
25.0
24.6
25.6
T
C
= -20°C
25.2
24.8
24.4
1700
1800
1900
2000
2100
2200
RF FREQUENCY (MHz)
T
C
= +25°C
V
CC
= 4.75V
V
CC
= 5.0V
1700
1800
1900
2000
2100
2200
1700
1800
1900
2000
2100
2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
2RF - 2LO vs. FUNDAMENTAL FREQUENCY
MAX9995 toc07
2RF - 2LO vs. FUNDAMENTAL FREQUENCY
MAX9995 toc08
2RF - 2LO vs. FUNDAMENTAL FREQUENCY
P
RF
= -5dBm
64
62
2RF - 2LO (dBc)
60
58
56
54
52
50
V
CC
= 5.25V
V
CC
= 5.0V
V
CC
= 4.75V
MAX9995 toc09
75
70
65
2RF - 2LO (dBc)
60
55
50
45
40
35
30
P
RF
= -5dBm
66
P
RF
= -5dBm
64
62
2RF - 2LO (dBc)
60
58
56
54
52
50
P
LO
= 0dBm
P
LO
= +3dBm
P
LO
= -3dBm
66
T
C
= +85°C
T
C
= +25°C
T
C
= -20°C
1700
1800
1900
2000
2100
2200
1700
1800
1900
2000
2100
2200
1700
1800
1900
2000
2100
2200
FUNDAMENTAL FREQUENCY (MHz)
FUNDAMENTAL FREQUENCY (MHz)
FUNDAMENTAL FREQUENCY (MHz)
3RF - 3LO vs. FUNDAMENTAL FREQUENCY
MAX9995 toc10
3RF - 3LO vs. FUNDAMENTAL FREQUENCY
MAX9995 toc11
3RF - 3LO vs. FUNDAMENTAL FREQUENCY
86
84
3RF - 3LO (dBc)
82
80
78
76
74
72
V
CC
= 4.75V
V
CC
= 5.25V
P
RF
= -5dBm
V
CC
= 5.0V
MAX9995 toc12
90
88
86
3RF - 3LO (dBc)
84
82
80
78
76
74
72
70
P
RF
= -5dBm
T
C
= -20°C
T
C
= +25°C
88
P
RF
= -5dBm
86
P
LO
= -3dBm
84
3RF - 3LO (dBc)
82
80
78
76
74
72
P
LO
= +3dBm
P
LO
= 0dBm
88
T
C
= +85°C
1700
1800
1900
2000
2100
2200
1700
1800
1900
2000
2100
2200
1700
1800
1900
2000
2100
2200
FUNDAMENTAL FREQUENCY (MHz)
FUNDAMENTAL FREQUENCY (MHz)
FUNDAMENTAL FREQUENCY (MHz)
_______________________________________________________________________________________
5
查看更多>
参数对比
与MAX9995相近的元器件有:MAX9995ETXT、MAX9995_11。描述及对比如下:
型号 MAX9995 MAX9995ETXT MAX9995_11
描述 Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch
热门器件
热门资源推荐
器件捷径:
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR SS ST SU SV SW SX SY SZ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 TA TB TC TD TE TF TG TH TI TJ TK TL TM TN TO TP TQ TR TS TT TU TV TW TX TY TZ U0 U1 U2 U3 U4 U6 U7 U8 UA UB UC UD UE UF UG UH UI UJ UK UL UM UN UP UQ UR US UT UU UV UW UX UZ V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 VA VB VC VD VE VF VG VH VI VJ VK VL VM VN VO VP VQ VR VS VT VU VV VW VX VY VZ W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 WA WB WC WD WE WF WG WH WI WJ WK WL WM WN WO WP WR WS WT WU WV WW WY X0 X1 X2 X3 X4 X5 X7 X8 X9 XA XB XC XD XE XF XG XH XK XL XM XN XO XP XQ XR XS XT XU XV XW XX XY XZ Y0 Y1 Y2 Y4 Y5 Y6 Y9 YA YB YC YD YE YF YG YH YK YL YM YN YP YQ YR YS YT YX Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z8 ZA ZB ZC ZD ZE ZF ZG ZH ZJ ZL ZM ZN ZP ZR ZS ZT ZU ZV ZW ZX ZY
需要登录后才可以下载。
登录取消