D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
NE592
Video Amplifier
The NE592 is a monolithic, two-stage, differential output,
wideband video amplifier. It offers fixed gains of 100 and 400
without external components and adjustable gains from 400 to 0 with
one external resistor. The input stage has been designed so that with
the addition of a few external reactive elements between the gain
select terminals, the circuit can function as a high-pass, low-pass, or
band-pass filter. This feature makes the circuit ideal for use as a
video or pulse amplifier in communications, magnetic memories,
display, video recorder systems, and floppy disk head amplifiers.
Now available in an 8-pin version with fixed gain of 400 without
external components and adjustable gain from 400 to 0 with one
external resistor.
Features
http://onsemi.com
MARKING
DIAGRAMS
8
1
SOIC−8
D SUFFIX
CASE 751
1
NE592
ALYW
G
•
•
•
•
•
•
•
•
•
•
•
•
120 MHz Unity Gain Bandwidth
Adjustable Gains from 0 to 400
Adjustable Pass Band
No Frequency Compensation Required
Wave Shaping with Minimal External Components
MIL-STD Processing Available
Pb−Free Packages are Available
8
1
PDIP−8
N SUFFIX
CASE 626
1
NE592N8
AWL
YYWWG
Applications
Floppy Disk Head Amplifier
Video Amplifier
Pulse Amplifier in Communications
Magnetic Memory
Video Recorder Systems
+V
R1
R2
R8
R10
R9
Q6
Q5
Q4
Q3
R11
OUTPUT 1
14
1
SOIC−14
D SUFFIX
CASE 751A
1
NE592D14G
AWLYWW
1
14
PDIP−14
N SUFFIX
CASE 646
1
NE592N14
AWLYYWWG
INPUT 1
Q1
G1A
R3
G2A
Q2
INPUT 2
G1B
R5
G2B
R12
OUTPUT 2
A
L, WL
Y, YY
W, WW
G
or G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
Q9
Q10
See detailed ordering and shipping information in the package
dimensions section on page 8 of this data sheet.
Q11
R14
-V
Q7A
Q7B
Q8
R7A
R7B
R15
R16
R13
Figure 1. Block Diagram
©
Semiconductor Components Industries, LLC, 2006
October, 2006
−
Rev. 4
1
Publication Order Number:
NE592/D
NE592
PIN CONNECTIONS
D, N Packages
INPUT 2
NC
G
2B
GAIN SELECT
G
1B
GAIN SELECT
V-
NC
OUTPUT 2
1
2
3
4
5
6
7
14
13
12
11
10
9
8
INPUT 1
NC
G
2A
GAIN SELECT
G
1A
GAIN SELECT
V+
NC
OUTPUT 1
INPUT 2
G
1B
GAIN SELECT
1
2
4
D, N Packages
8
7
6
5
INPUT 1
G
1A
GAIN SELECT
V+
OUTPUT 1
V- 3
OUTPUT 2
(Top View)
(Top View)
MAXIMUM RATINGS
(T
A
= +25°C, unless otherwise noted.)
Rating
Supply Voltage
Differential Input Voltage
Common-Mode Input Voltage
Output Current
Operating Ambient Temperature Range
Operating Junction Temperature
Storage Temperature Range
Maximum Power Dissipation, T
A
= 25°C (Still Air) (Note 1)
D-14 Package
D-8 Package
N-14 Package
N-8 Package
D-14 Package
D-8 Package
N-14 Package
N-8 Package
Symbol
V
CC
V
IN
V
CM
I
OUT
T
A
T
J
T
STG
P
D MAX
0.98
0.79
1.44J1.17
R
qJA
145
182
100
130
°C/W
Value
"8.0
"5.0
"6.0
10
0 to +70
150
65 to +150
Unit
V
V
V
mA
°C
°C
°C
W
Thermal Resistance, Junction−to−Ambient
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Derate above 25°C at the following rates:
D-14 package at 6.9 mW/°C
D-8 package at 5.5 mW/°C
N-14 package at 10 mW/°C
N-8 package at 7.7 mW/°C.
http://onsemi.com
2
NE592
DC ELECTRICAL CHARACTERISTICS
(V
SS
=
"6.0
V, V
CM
= 0, typicals at T
A
= +25°C, min and max at 0°C
v
T
A
v
70°C, unless
Characteristic
Differential Voltage Gain
Gain 1 (Note 2)
Gain 2 (Notes 3 and 4)
Input Resistance
Gain 1 (Note 2)
Gain 2 (Notes 3 and 4)
Input Capacitance
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Voltage Range
Common-Mode Rejection Ratio
Gain 2 (Note 4)
Test Conditions
R
L
= 2.0 kW, V
OUT
= 3.0 V
P-P
Symbol
A
VOL
Min
250
80
−
10
8.0
−
−
−
−
−
−
"1.0
60
50
−
PSRR
V
OS
50
Typ
400
100
4.0
30
−
2.0
0.4
−
9.0
−
12
−
86
−
60
70
Max
600
120
−
−
−
−
5.0
6.0
30
40
−
−
−
−
−
−
dB
V
Unit
V/V
otherwise noted. Recommended operating supply voltages V
S
=
"6.0
V.)
−
T
A
= 25°C
0°C
v
T
A
v
70°C
Gain 2 (Note 4)
T
A
= 25°C
0°C
v
T
A
v
70°C
T
A
= 25°C
0°C
v
T
A
v
70°C
BW 1.0 kHz to 10 MHz
−
V
CM
"1.0
V, f < 100 kHz, T
A
= 25°C
V
CM
"1.0
V, f < 100 kHz,
0°C
v
T
A
v
70°C
V
CM
"1.0
V, f < 5.0 MHz
DV
S
=
"0.5
V
R
IN
kW
C
IN
I
OS
I
BIAS
V
NOISE
V
IN
CMRR
pF
mA
mA
mV
RMS
V
dB
Supply Voltage Rejection Ratio
Gain 2 (Note 4)
Output Offset Voltage
Gain 1
Gain 2 (Note 4)
Gain 3 (Note 5)
Gain 3 (Note 5)
Output Common-Mode Voltage
Output Voltage Swing Differential
Output Resistance
Power Supply Current
R
L
=
R
R
L
=
R
R
L
=
R,
T
A
= 25°C
R
L
=
R,
0°C
v
T
A
v
70°C
R
L
=
R,
T
A
= 25°C
R
L
= 2.0 kW, T
A
= 25°C
R
L
= 2.0 kW, 0°C
v
T
A
v
70°C
−
R
L
=
R,
T
A
= 25°C
R
L
=
R,
0°C
v
T
A
v
70°C
−
−
−
−
2.4
3.0
2.8
−
−
−
−
−
0.35
−
2.9
4.0
−
20
18
−
1.5
1.5
0.75
1.0
3.4
−
−
−
24
27
V
CM
V
OUT
R
OUT
I
CC
V
V
W
mA
supply voltages V
S
=
"6.0
V.)
Characteristic
Bandwidth
Gain 1 (Note 2)
Gain 2 (Notes 3 and 4)
Rise Time
Gain 1 (Note 2)
Gain 2 (Notes 3 and 4)
Propagation Delay
Gain 1 (Note 2)
Gain 2 (Notes 3 and 4)
2.
3.
4.
5.
AC ELECTRICAL CHARACTERISTICS
(T
A
= +25°C V
SS
=
"6.0
V, V
CM
= 0, unless otherwise noted. Recommended operating
Test Conditions
−
Symbol
BW
Min
−
−
−
−
−
−
Typ
40
90
10.5
4.5
7.5
6.0
Max
−
−
12
−
10
−
Unit
MHz
V
OUT
= 1.0 V
P−P
t
R
ns
V
OUT
= 1.0 V
P−P
t
PD
ns
Gain select Pins G
1A
and G
1B
connected together.
Gain select Pins G
2A
and G
2B
connected together.
Applies to 14-pin version only.
All gain select pins open.
http://onsemi.com
3
NE592
TYPICAL PERFORMANCE CHARACTERISTICS
COMMON-MODE REJECTION RATIO
−
dB
100
OUTPUT VOLTAGE SWING
−
Vpp
90
80
70
60
50
40
30
20
10
0
10k
100k
1M
10M
100M
GAIN 2
V
S
= +6V
T
A
= 25
o
C
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
V
S
= +6V
T
A
= 25
o
C
R
L
= 1kW
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
-0.2
1
5 10
50 100
500 1000
-0.4
-15 -10 -5
0
5
10 15 20 25 30 35
GAIN 2
GAIN 1
V
S
= +6V
T
A
= 25
o
C
R
L
= 1k
FREQUENCY
−
Hz
FREQUENCY
−
MHz
TIME
−
ns
Figure 2. Common−Mode
Rejection Ratio as a Function
of Frequency
Figure 3. Output Voltage Swing
as a Function of Frequency
Figure 4. Pulse Response
28
T
A
= 25
o
C
SUPPLY CURRENT
−
mA
24
OUTPUT VOLTAGE
−
V
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
-0.2
GAIN 2
T
A
= 25
o
C
R
L
= 1kW
1.6
1.4
OUTPUT VOLTAGE
−
V
V
S
= +8V
V
S
= +6V
V
S
= +3V
1.2
1.0
0.8
0.6
0.4
0.2
0
-0.2
-0.4
0
5 10 15 20 25 30 35
TIME
−
ns
-15 -10 -5
0
5
10 15 20 25 30 35
T
amb
= 0
o
C
T
A
= 25
o
C
T
A
= 70
o
C
GAIN 2
V
S
= +
6V
R
L
= 1kW
20
16
12
8
3
4
5
6
7
8
SUPPLY VOLTAGE
−
+V
-0.4
-15 -10 -5
TIME
−
ns
Figure 5. Supply Current as
a Function of Temperature
Figure 6. Pulse Response as
a Function of Supply Voltage
Figure 7. Pulse Response as
a Function of Temperature
SINGLE ENDED VOLTAGE GAIN
−
dB
1.10
1.08
RELATIVE VOLTAGE GAIN
1.06
1.04
1.02
1.00
0.98
0.96
0.94
0.92
0.90
0
10
20
30
40
50
60
70
GAIN 1
GAIN 2
V
S
= +
6V
60
50
40
30
20
10
0
-10
1
5 10
T
A
=
−55
o
C
T
A
= 25
o
C
T
A
= 125
o
C
1.4
GAIN 2
V
S
= +
6V
R
L
= 1kW
1.3
RELATIVE VOLTAGE GAIN
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
50 100
500 1000
3
4
5
6
7
8
FREQUENCY
−
MHz
SUPPLY VOLTAGE
−
+V
GAIN 1
GAIN 2
T
amb
= 25
o
C
TEMPERATURE
−
o
C
Figure 8. Voltage Gain as a
Function of Temperature
Figure 9. Gain vs. Frequency
as a Function of Temperature
Figure 10. Voltage Gain as a
Function of Supply Voltage
http://onsemi.com
4