首页 > 器件类别 > 分立半导体 > 晶体管

PJP6000

60V N-Channel Enhancement Mode MOSFET

器件类别:分立半导体    晶体管   

厂商名称:强茂(PANJIT)

厂商官网:http://www.panjit.com.tw/

下载文档
器件参数
参数名称
属性值
厂商名称
强茂(PANJIT)
Reach Compliance Code
compli
文档预览
PJP6000
60V N-Channel Enhancement Mode MOSFET
FEATURES
• R
DS(ON)
, V
GS
@10V,I
DS
@30A=14mΩ
• Advanced Trench Process Technology
• High Density Cell Design For Ultra Low On-Resistance
• Specially Designed for Converters and Power Motor Controls
• Fully Characterized Avalanche Voltage and Current
• In compliance with EU RoHS 2002/95/EC directives
MECHANICALDATA
• Case: TO-220AB Molded Plastic
• Terminals : Solderable per MIL-STD-750,Method 2026
• Marking : P6000
Drain
Gate
Source
Maximum RATINGS and Thermal Characteristics (T
A
=25
O
C unless otherwise noted )
PA RA M E TE R
D r a i n- S o ur c e Vo l t a g e
G a t e - S o ur c e Vo l t a g e
C o nt i nuo us D r a i n C ur r e nt
P ul s e d D r a i n C ur r e nt
1)
S ym b o l
V
D S
V
GS
I
D
I
D M
T
A
= 2 5
O
C
T
A
= 7 5
O
C
Li mi t
60
+20
60
210
90
5 3 .5
-5 5 to +1 5 0
U ni t s
V
V
A
A
W
O
M a xi m um P o w e r D i s s i p a t i o n
P
D
T
J
,T
S T G
E
AS
R
θ
J C
R
θ
J A
O p e r a t i n g J u n c t i o n a n d S t o r a g e Te m p e r a t u r e R a n g e
C
Avalanche Energy with Single Pulse
I
A S
=37A, VDD=30V, L=0.3mH
Junction-to-Case Thermal Resistance
Junction-to Ambient Thermal Resistance(PCB mounted)
2
410
1 .4
62
O
mJ
C /W
C /W
O
Note: 1. Maximum DC current limited by the package
PAN JIT RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE
STAD-JUN.11.2007
PAGE . 1
PJP6000
ELECTRICAL CHARACTERISTICS
( T
A
=25
O
C unless otherwise noted )
P a ra me te r
S ta ti c
D r a i n- S o ur c e B r e a k d o w n Vo l t a g e
S ym b o l
Te s t C o n d i t i o n
M i n.
Ty p .
M a x.
U ni t s
BV
D SS
V
G S (th)
R
D S (o n)
V
G S
= 0 V , I
D
= 2 5 0 u A
V
D S
= V
G S
, I
D
= 2 5 0 u A
V
G S
=10V, I
D
=30A
V
G S
=10V, I
D
=30A, Tc=125 C
V
D S
=60V, V
G S
=0V
O
60
1
-
-
-
O
-
-
12
-
-
-
-
-
-
3
14
26
1
V
V
m
G a t e Thr e s ho l d Vo l t a g e
D r a i n- S o ur c e O n- S t a t e
R e s i s t a nc e
Ze r o Ga te Vo lta g e D r a i n
C ur r e nt
I
D S S
V
D S
=60V, V
G S
=0V, Tc=125 C
-
-
25
10
+100
-
uA
Gate Body Leakage
Forward Transconductance
I
G S S
g
fS
V
G S
=+2 0 V, V
D S
=0 V
V
D S
> I
D ( O N )
X R
D S ( O N ) m a x
, I
D
= 1 5 A
nA
S
D ynami c
To t a l G a t e C h a r g e
G a t e - S o ur c e C ha r g e
G a t e - D r a i n C ha r g e
Tu r n - O n D e l a y Ti m e
Tu r n - O n R i s e Ti m e
Tu r n - O f f D e l a y Ti m e
Tu r n - O f f F a l l Ti m e
In p u t C a p a c i t a n c e
O ut p ut C a p a c i t a nc e
R e v e r s e Tr a n s f e r C a p a c i t a n c e
Q
g
Q
g s
Q
g d
t
d (o n)
t
r
t
d (o ff)
t
f
C
iss
C
oss
C
rs s
V
D S
=2 5 V, V
G S
=0 V
f=1 .0 MH
Z
V
D D
=30V , R
L
=15
I
D
=2A , V
G E N
=10V
R
G
=2.5
V
D S
= 3 0 V , I
D
= 3 0 A
V
G S
=10V
-
-
-
-
-
-
-
-
-
-
40
3 .8
12
14.6
14.2
40
7 .3
1480
190
135
-
-
-
20
18
nC
ns
60
9 .5
-
-
-
pF
S o ur c e - D r a i n D i o d e
M a x. D i o d e F o r w a r d C ur r e nt
D i o d e F o rwa rd Vo lta g e
I
s
V
SD
-
I
S
= 3 0 A , V
G S
= 0 V
-
-
-
0 .9 4
60
1 .2
A
V
Switching
Test Circuit
V
IN
V
DD
R
L
V
OUT
Gate Charge
Test Circuit
V
GS
V
DD
R
L
R
G
1mA
R
G
STAD-JUN.11.2007
PAGE . 2
PJP6000
Typical Characteristics Curves (T
A
=25 C,unless otherwise noted)
O
100
I
D
- Drain-to-Source Current (A)
100
5.0V
6.0V~10
4.5V
80
60
40
I
D
- Drain Source Current (A)
V =10V
V
DS
DS
=10V
80
60
25
o
C
40
T
J
= 125
o
C
20
- 55
o
C
T
J
=-55
0
2
2.5
3
3.5
4
4.5
5
O
4.0V
20
0
0
3
6
9
12
15
V
DS
- Drain-to-Source Voltage (V)
T
J
=25
O
C
C
5.5
6
V
GS
- Gate-to-Source Voltage (V)
Fig. 1-TYPICAL FORWARD CHARACTERISTIC
FIG.1- Output Characteristic
FIG.2- Transfer Characteristic
30
50
R
DS(ON)
- On-Resistance (m
W
)
25
20
15
10
5
0
0
20
40
60
80
100
I
D
- Drain Current (A)
R
DS(ON)
- On-Resistance (m
W
)
V
GS
= 10V
I
D
=30A
40
30
125
o
C
20
10
0
2
4
6
T
J
=25
o
C
8
10
V
GS
- Gate-to-Source Voltage (V)
FIG.3- On Resistance vs Drain Current
FIG.4- On Resistance vs Gate to Source Voltage
R
DS(ON)
- On-Resistance
(Normalized)
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
C - Capacitance (pF)
V
GS
=10V
VGS =10 V
I
D
=30A
ID =30A
3000
2500
2000
Ciss
1500
1000
500
Crss
0
Coss
f
f=1MHz
= 1MHz
V
GS
= 0V
V
GS
=0V
-50
-25
0
25
50
75
100
125
150
0
5
10
15
20
25
T
J
- Junction Tem perature (
o
C)
V
DS
- Drain-to-Source Voltage (V)
FIG.5- On Resistance vs Junction Temperature
FIG.6 - Capacitance
STAD-JUN.11.2007
PAGE . 3
PJP6000
10
8
6
4
2
0
0
5
10
15
20
25
30
35
40
V
GS
- Gate-to-Source Voltage (V)
I
S
- Source Current (A)
V
DS
=30 V
V
DS
=30V
I
D
=30A
I
D
=30A
100
V
V
GS
GS
=0V
= 0V
10
T
J
=125
O
C
T
J
= 125
o
C
1
-55
o
C
T
J
=25
O
C
T
J
=-55
O
C
25
o
C
0.1
0.2
0.4
0.6
0.8
1
1.2
1.4
V
SD
- Source-to-Drain Voltage (V)
1.6
Q
g
- Gate Charge (nC)
Fig.7 - Gate Charge
Fig.10 - Source-Drain Diode Forward Voltage
1.2
V
th
- G-S Threshold Voltage (NORMALIZED)
1.2
BV
DSS
-
Breakdown Voltage (NORMALIZED)
I
D
=250uA
I
D
=250uA
1.15
1.1
1.05
1
0.95
0.9
1.1
1
0.9
0.8
0.7
-50
-25
0
25
50
75 100 125
T
J
- Junction Tem perature (
o
C)
150
-50
-25
0
25
50
75
100
o
125
150
T
J
- Junction Te m pe rature ( C)
Fig.8 - Threshold Voltage vs Junction Temperature
Fig.9 - Breakdown Voltage vs Junction Temperature
80
70
1000
I
D
- Drain Current (A)
I
D
- Drain Current (A)
60
50
40
30
20
10
0
25
50
75
100
125
T
J
- Junction Tem perature (
o
C)
150
100
Rds(on) Limited
100us
10
DC
1ms
10ms
1
0.1
0.1
1
10
100
1000
V
DS
-
Drain-to-Source Voltage (V)
Fig.11 - Maximum Drain Current vs Junction Temperature
Fig.12 - Safe Operation Area
STAD-JUN.11.2007
PAGE . 4
查看更多>
EEWORLD大学堂3月课程&创客视频精选,来领键盘啦!
说过发言积极者要送键盘的,所以我来开奖啦,获得蓝牙键盘的网友是:liaoyuanhongcardin6请获奖网友私信我收货信息没有获奖的网友以后每月都有机会哟,大家加油吧。敬请关注论坛近期要推出的活动你期望的EE大学堂之功能体验篇EEWORLD大学堂3月又新添了不少好玩有趣的视频以及实用专业的课程,月末了,精选了一些推送给大家。网友原创课程Maychang趣味电子技术史话之通信技术发...
phantom7 综合技术交流
压缩机变频算法,你懂多少?
最近在啃几本空调变频技术方面的书,变频控制中基于控制器的变频控制算法是里面的关键,但很多算法方面的资料都太泛泛而谈,很难了解关键点,我们设计中心的同事貌似在这方面了解的比较深,他们与富士通联合开发方案,算法上据说有很多独特优化,很羡慕啊,希望能有机会接触到这方面的核心技术。8月份富士通成都公司变频技术经理钟老师在深圳会展中心的第四届MCU技术创新与嵌入式应用大会上谈了他们的方案,其中几个slide提到算法话题(见图),不过谈得都不深,私下聊了下,很难深入(人家的核心技术,估计进入合作应该可以有...
uu5001 综合技术交流
防雷过压常见保护元件的特性及选型
防雷过压保护主要有以下下3种方法:1.采用躲避的方法:正确的选择线路的路由、站址(设备安放点),有意识的尽量避开在理论上、经验上和实际上证实的雷击区或雷击点。2.对雷电进行横截:这需要外加一定的保护元器件,旁路或限制进入系统内的雷电压(流),从而减轻系统受损的程度或在系统能承受的水平之下。3.提高系统的耐雷水平:从改善系统的结构入手,通过对危险性的估计,规定线路、设备的介质绝缘强度、耐冲击能力等,提高其自身的耐雷能力(改善设备的伏秒特性)。这三条保护原则中,后面两条均需要外加一...
langtuodianzi 综合技术交流
关于GPU编程的讨论
图形处理器(GraphicsProcessingUnit,GPU)和中央处理器(CentralProcessingUnit,CPU)相对,是显卡的核心芯片;统一计算设备架构(ComputeUnifiedDeviceArchitecture,CUDA),是由英伟达(NVIDIA)推出的通用并行计算架构,作为开发GPU的编程接口,CUDA通过CPU任务分发和GPU并行处理来提升计算效率。关于GPU编程的讨论在CUDA平台下,CPU和GPU是如何分工协作的?1....
ljg2np 综合技术交流