T2035H Series
Snubberless™ high temperature 20 A Triacs
Main features
Symbol
I
T(RMS)
V
DRM
/V
RRM
I
GT (Q1)
T
j MAX
Value
20
600
35
150
Unit
A
V
mA
°C
G
A1 A2
A2
Description
Specifically designed to operate at 150° C, the
new 20 A T2035H Triacs provide an enhanced
performance in terms of power loss and thermal
dissipation. This facilitates the optimization of
heatsink dimensioning, leading to improved space
and cost effectiveness when compared to electro-
mechanical solutions.
Based on ST Snubberless™ technology, the
T2035H series offers high commutation switching
capabilities and high noise immunity levels on the
full range of T
j
.
The T2035H series facilitates the optimization of
the control of universal motors and inductive
loads found in appliances such as vacuum
cleaners, and washing machines.
D
2
PAK
T2035H-G
)-
(s
so
b
ct
u
d
-O
ro
s)
P
t(
te
uc
le
o
od
r
s
P
b
O
te
le
so
b
O
The T2035H Triacs are also suitable for use in
high temperature environment found in hot
appliances such as cookers, ovens, hobs, electric
heaters, and coffee machines.
TM: Snubberless is a trademark of STMicroelectronics
b
O
so
te
le
A2
ro
P
uc
d
s)
t(
G
A1
A2
TO-220AB Insulated
T2035H-I
et
l
P
e
od
r
G
A2
s)
t(
uc
A1
TO-220AB
T2035H-T
Order code
Part number
Marking
T2035H-600G
T2035H-600G
T2035H-600T
T2035H-600I
T2035H-600G
T2035H-600G-TR
T2035H-600TRG
T2035H-600IRG
September 2006
Rev 2
1/10
www.st.com
10
Characteristics
T2035H Series
1
Table 1.
Symbol
Characteristics
Absolute maximum ratings
Parameter
D
2
PAK
TO-220AB
TO-220AB Ins
I
TSM
I²t
dI/dt
Non repetitive surge peak on-state current
(full cycle sine wave, T
j
initial = 25° C)
I²t Value for fusing
Critical rate of rise of on-state current
I
G
= 2xI
GT
, tr
≤
100 ns
Non repetitive surge peak off state voltage
Peak gate current
Average gate power dissipation
Storage junction temperature range
Operating junction temperature range
t
p
= 20 µs
F = 60 Hz
F = 50 Hz
T
c
= 127° C
T
c
= 105° C
t = 16.7 ms
t = 20 ms
tp = 10 ms
F = 120 Hz
T
j
= 125° C
T
j
= 25° C
210
A
200
283
50
Value
Unit
I
T(RMS)
RMS on-state current (full sine wave)
20
A
V
DSM
/V
RSM
I
GM
P
G(AV)
T
stg
T
j
T
I
T
j
= 150° C
T
j
= 150° C
Maximum leads soldering temperature during 10 s
Table 2.
Symbol
I
GT (1)
V
GT
Electrical characteristics (T
j
= 25° C, unless otherwise specified)
Test conditions
V
D
= 12 V, R
L
= 33
Ω
ro
s)
P
t(
te
uc
le
o
od
r
s
P
b
O
te
le
so
b
O
V
GD
I
H (2)
I
L
I
T
= 100 mA
I
G
= 1.2 x I
GT
dV/dt
(2)
(dI/dt)c
(2)
Without snubber, T
j
= 150° C
1. minimum I
GT
is guaranteed at 5% of I
GT
max
2. for both polarities of A2 referenced to A1
V
D
= V
DRM
, R
L
=3.3 kΩ, T
j
= 150° C
uc
d
s)
t(
O
-
so
b
te
le
r
P
d
o
ct
u
700
4
1
260
s)
(
A
2
s
A/µs
V
A
b
-O
so
Quadrant
I - II - III
I - II - III
I - II - III
te
le
r
P
MAX
MAX
MIN
MAX
od
-40 to +150
-30 to +150
s)
t(
uc
W
°C
°C
Value
35
1.3
0.15
35
50
MAX
80
MIN
MIN
300
8.9
Unit
mA
V
V
mA
mA
I - III
II
V
D
= 67% V
DRM
, gate open, T
j
= 150° C
V/µs
A/ms
2/10
T2035H Series
Table 3.
Symbol
V
TM (1)
V
TO (1)
R
D (1)
I
DRM
I
RRM
V
DRM
= V
RRM
V
D
/V
R
= 400 V (at peak mains voltage)
1. for both polarities of A2 referenced to A1
Characteristics
Static electrical characteristics
Test conditions
I
TM
= 28 A, t
p
= 380 µs
Tj = 25° C
Tj = 150° C
Tj = 150° C
Tj = 25° C
Tj = 150° C
Tj = 150° C
MAX
MAX
MAX
MAX
Value
1.5
0.80
21
5
7.4
mA
4.8
Unit
V
V
mΩ
µA
Table 4.
Symbol
Thermal resistance
Parameter
D
2
PAK
TO-220AB
R
th (j-c)
Junction to case for full (AC)
TO-220AB Ins
S = 1 cm²
R
th (j-a)
Junction to ambient
D
2
PAK
Figure 1.
P(W)
24
22
20
18
16
14
12
10
8
6
4
2
0
α=180°
Maximum power dissipation vs
RMS on-state current (full cycle)
et
l
r
so
P
b
O
te
le
so
b
O
0
2
4
6
8
r
P
e
od
12
uc
14
s)
t(
180°
O
-
Figure 2.
so
b
I
T(RMS)
(A)
TO-220AB
TO-220AB Ins
te
le
ro
P
uc
d
Value
1
1.9
45
60
s)
t(
Unit
22
I
T(RMS)
(A)
10
uc
od
s)
t(
16
18
b
-O
20
18
16
14
12
10
8
6
4
2
0
20
so
te
le
RMS on-state current versus case
temperature
TO-220AB/D
2
PAK
r
P
od
s)
t(
uc
°C/W
TO-220AB Ins
α=180°
T
C
(°C)
25
50
75
100
125
150
0
3/10
Characteristics
T2035H Series
Figure 3.
RMS on-state current vs ambient
temperature (epoxy printed
circuit board FR4 e
cu
= 35 µm)
α=180°
S
CU
=1cm²
Figure 4.
Relative variation of thermal
impedance vs pulse duration
I
T(RMS)
(A)
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0
25
50
75
100
125
150
T
amb
(°C)
1.E-02
1.E-01
1.E+00
K=[Z
th
/R
th
]
Z
th(j-c)
Z
th(j-a)
t
P
(s)
1.E-03
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
Figure 5.
I
TM
(A)
100
On-state characteristics
(maximum values)
Figure 6.
I
TSM
(A)
220
200
180
Surge peak on-state current vs
number of cycles
T
j
=150°C
-
et
l
)
(s
so
b
ct
u
d
-O
ro
s)
P
t(
te
uc
le
o
od
r
s
P
b
O
te
le
so
b
O
10
T
j
=25°C
b
O
140
120
100
80
60
40
20
0
160
so
te
le
Repetitive
T
c
=127°C
ro
P
uc
d
1.E+02
s)
t(
1.E+03
Non repetitive
T
j
initial=25°C
P
e
10
od
r
100
s)
t(
uc
t=20ms
One cycle
V
TM
(V)
T
j
max. :
V
T0
= 0.80 V
R
D
= 21 mW
Number of cycles
1000
1
0.0
0.5
1.0
1.5
2.0
2.5
3.0
1
Figure 7.
Non repetitive surge peak on-state
current (sinusoidal pulse width
tp<10 ms) and value of I²t
Figure 8.
Relative variation of gate trigger
current, holding current and
latching current vs junction
temperature (typical values)
I
TSM
(A), I²t (A²s)
I
GT
, I
H
, I
L
[T
j
] / I
GT
, I
H
, I
L
[T
j
=25°C]
10000
2.5
Tj initial=25°C
dI/dt limitation: 50A/µs
2.0
I
GT
1.5
1000
I
H
& I
L
I
TSM
1.0
I²t
0.5
T
j
(°C)
-40
-20
0
20
40
60
80
100
120
140
160
t
P
(ms)
100
0.01
0.0
0.10
1.00
10.00
4/10
T2035H Series
Characteristics
Figure 9.
Relative variation of critical rate of Figure 10. Relative variation of critical rate of
decrease of main current (di/dt)c vs
decrease of main current (di/dt)c
reapplied (dV/dt)c
versus junction temperature
8
7
(dI/dt)
c
[T
j
] / (dI/dt)
c
[T
j
=125°C]
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
(dI/dt)
c
[ (dV/dt)
c
] / Specified (dI/dt)
c
6
5
4
3
2
dV/dt (V/µs)
1
T
j
(°C)
0.1
1.0
10.0
100.0
0
25
50
75
100
Figure 11. Leakage current versus junction
temperature for different values of
blocking voltage (typical values)
I
DRM
/I
RRM
(mA)
Figure 12. Acceptable repetitive peak off-state
voltage versus case-ambient
thermal resistance
R
th(c-a)
(°C/W)
10
9
1.E+01
V
DRM
=V
RRM
=600 V
1.E+00
V
DRM
=V
RRM
=400 V
)-
(s
so
b
ct
u
d
-O
ro
s)
P
t(
te
uc
le
o
od
r
s
P
b
O
te
le
so
b
O
1.E-01
V
DRM
=V
RRM
=200 V
b
O
8
7
6
5
4
3
2
1
so
te
le
ro
P
uc
d
125
s)
t(
T
J
=150 °C
150
R
th(j-c)
=1 °C/W (Non insulated)
R
th(j-c)
=1.9 °C/W (Insulated)
1.E-02
te
le
400
r
P
450
od
s)
t(
uc
1.E-03
V
DRM
/V
RRM
(V)
T
j
(°C)
1.E-04
0
300
350
500
550
600
50
75
100
125
150
Figure 13. D
2
PAK junction to ambient thermal
resistance versus copper surface
under tab (PCB FR4, copper
thickness 35 µm)
R
th(j-a)
(°C/W)
80
70
60
50
40
30
20
10
0
0
5
10
15
20
25
30
35
40
S
CU
(cm²)
D²PAK
5/10