(V = 2.5 V to 5.5 V, V = 2 V. R = 2 k to GND; C =200 pF to GND; all specifications T to T unless otherwise
DD
REF
L
L
MIN
MAX
Parameter
1
Min
B Version
2
Typ
Max
Unit
Conditions/Comments
DC PERFORMANCE
3, 4
AD5332
Resolution
Relative Accuracy
Differential Nonlinearity
AD5333
Resolution
Relative Accuracy
Differential Nonlinearity
AD5342/AD5343
Resolution
Relative Accuracy
Differential Nonlinearity
Offset Error
Gain Error
Lower Deadband
5
Upper Deadband
Offset Error Drift
6
Gain Error Drift
6
DC Power Supply Rejection Ratio
6
DC Crosstalk
6
DAC REFERENCE INPUT
6
V
REF
Input Range
V
REF
Input Impedance
8
±
0.15
±
0.02
10
±
0.5
±
0.05
12
±
2
±
0.2
±
0.4
±
0.15
10
10
–12
–5
–60
200
±
1
±
0.25
±
4
±
0.5
±
16
±
1
±
3
±
1
60
60
Bits
LSB
LSB
Bits
LSB
LSB
Bits
LSB
LSB
% of FSR
% of FSR
mV
mV
ppm of FSR/°C
ppm of FSR/°C
dB
µV
Guaranteed Monotonic By Design Over All Codes
Guaranteed Monotonic By Design Over All Codes
Guaranteed Monotonic By Design Over All Codes
Lower Deadband Exists Only if Offset Error Is Negative
V
DD
= 5 V. Upper Deadband Exists Only if V
REF =
V
DD
∆V
DD
=
±
10%
R
L
= 2 kΩ to GND, 2 kΩ to V
DD
; C
L
= 200 pF to GND;
Gain = 0
Buffered Reference (AD5333 and AD5342)
Unbuffered Reference
Buffered Reference (AD5333 and AD5342)
Unbuffered Reference. Gain = 1, Input Impedance = R
DAC
Unbuffered Reference. Gain = 2, Input Impedance = R
DAC
Frequency = 10 kHz
Frequency = 10 kHz (AD5332, AD5333, and AD5342)
Rail-to-Rail Operation
1
0.25
>10
180
90
–90
–90
V
DD
V
DD
Reference Feedthrough
Channel-to-Channel Isolation
OUTPUT CHARACTERISTICS
6
Minimum Output Voltage
4, 7
Maximum Output Voltage
4, 7
DC Output Impedance
Short Circuit Current
Power-Up Time
LOGIC INPUTS
6
Input Current
V
IL
, Input Low Voltage
V
V
MΩ
kΩ
kΩ
dB
dB
V min
V max
Ω
mA
mA
µs
µs
µA
V
V
V
V
V
V
pF
V
µA
µA
µA
µA
0.001
V
DD
– 0.001
0.5
25
16
2.5
5
±
1
0.8
0.6
0.5
2.4
2.1
2.0
3.5
2.5
300
230
5.5
450
350
V
DD
= 5 V
V
DD
= 3 V
Coming Out of Power-Down Mode. V
DD
= 5 V
Coming Out of Power-Down Mode. V
DD
= 3 V
V
IH
, Input High Voltage
V
DD
= 5 V
±
10%
V
DD
= 3 V
±
10%
V
DD
= 2.5 V
V
DD
= 5 V
±
10%
V
DD
= 3 V
±
10%
V
DD
= 2.5 V
Pin Capacitance
POWER REQUIREMENTS
V
DD
I
DD
(Normal Mode)
V
DD
= 4.5 V to 5.5 V
V
DD
= 2.5 V to 3.6 V
I
DD
(Power-Down Mode)
V
DD
= 4.5 V to 5.5 V
V
DD
= 2.5 V to 3.6 V
All DACs active and excluding load currents
Unbuffered Reference. V
IH
= V
DD
, V
IL
= GND.
I
DD
increases by 50
µA
at V
REF
> V
DD
– 100 mV.
In Buffered Mode extra current is (5 +V
REF
/R
DAC
)
µA.
0.2
0.08
1
1
NOTES
1
See Terminology section.
2
Temperature range: B Version: –40°C to +105°C; typical specifications are at 25°C.
3
Linearity is tested using a reduced code range: AD5332 (Code 8 to 255); AD5333 (Code 28 to 1023); AD5342/AD5343 (Code 115 to 4095).
4
DC specifications tested with outputs unloaded.
5
This corresponds to x codes. x = Deadband voltage/LSB size.
6
Guaranteed by design and characterization, not production tested.
7
In order for the amplifier output to reach its minimum voltage, Offset Error must be negative. In order for the amplifier output to reach its maximum voltage, V
REF
= V
DD
and
“Offset plus Gain” Error must be positive.
Specifications subject to change without notice.
–2–
REV. 0
AD5332/AD5333/AD5342/AD5343
AC CHARACTERISTICS
Parameter
2
Output Voltage Settling Time
AD5332
AD5333
AD5342
AD5343
Slew Rate
Major Code Transition Glitch Energy
Digital Feedthrough
Digital Crosstalk
Analog Crosstalk
DAC-to-DAC Crosstalk
Multiplying Bandwidth
Total Harmonic Distortion
1
(V
DD
= 2.5 V to 5.5 V. R
L
= 2 k to GND; C
L
= 200 pF to GND; all specifications T
MIN
to T
MAX
unless
otherwise noted.)
B Version
3
Min
Typ
Max
6
7
8
8
0.7
6
0.5
3
0.5
3.5
200
–70
8
9
10
10
Unit
µs
µs
µs
µs
V/µs
nV-s
nV-s
nV-s
nV-s
nV-s
kHz
dB
Conditions/Comments
V
REF
= 2 V. See Figure 20
1/4 Scale to 3/4 Scale Change (40 H to C0 H)
1/4 Scale to 3/4 Scale Change (100 H to 300 H)
1/4 Scale to 3/4 Scale Change (400 H to C00 H)
1/4 Scale to 3/4 Scale Change (400 H to C00 H)
1 LSB Change Around Major Carry
V
REF
= 2 V
±
0.1 V p-p. Unbuffered Mode
V
REF
= 2.5 V
±
0.1 V p-p. Frequency = 10 kHz
NOTES
1
Guaranteed by design and characterization, not production tested.
2
See Terminology section.
3
Temperature range: B Version: –40°C to +105°C; typical specifications are at 25°C.
Specifications subject to change without notice.
TIMING CHARACTERISTICS
1, 2, 3
(V
Parameter
t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
8
t
9
t
10
t
11
t
12
t
13
t
14
t
15
Limit at T
MIN
, T
MAX
0
0
20
5
4.5
5
5
4.5
5
4.5
20
20
50
20
0
DD
= 2.5 V to 5.5 V, All specifications T
MIN
to T
MAX
unless otherwise noted.)
Unit
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
Condition/Comments
CS
to
WR
Setup Time
CS
to
WR
Hold Time
WR
Pulsewidth
Data, GAIN, BUF, HBEN Setup Time
Data, GAIN, BUF, HBEN Hold Time
Synchronous Mode.
WR
Falling to
LDAC
Falling
Synchronous Mode.
LDAC
Falling to
WR
Rising
Synchronous Mode.
WR
Rising to
LDAC
Rising
Asynchronous Mode.
LDAC
Rising to
WR
Rising
Asynchronous Mode.
WR
Rising to
LDAC
Falling
LDAC
Pulsewidth
CLR
Pulsewidth
Time Between
WR
Cycles
A0 Setup Time
A0 Hold Time
NOTES
1
Guaranteed by design and characterization, not production tested.
2
All input signals are specified with tr = tf = 5 ns (10% to 90% of V
DD
) and
timed from a voltage level of (V
IL
+ V
IH
)/2.
3
See Figure 1.
Specifications subject to change without notice.
t
1
CS
t
2
t
3
t
13
t
4
t
5
WR
DATA,
GAIN,
BUF,
HBEN
LDAC
1
t
6
t
7
t
8
t
9
LDAC
2
CLR
A0
t
10
t
11
t
14
t
15
t
12
1
SYNCHRONOUS
LDAC
UPDATE MODE
2
ASYNCHRONOUS
LDAC
UPDATE MODE
Figure 1. Parallel Interface Timing Diagram
REV. 0
–3–
AD5332/AD5333/AD5342/AD5343
ABSOLUTE MAXIMUM RATINGS*
(T
A
= 25°C unless otherwise noted)
V
DD
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V
Digital Input Voltage to GND . . . . . . . –0.3 V to V
DD
+ 0.3 V
Digital Output Voltage to GND . . . . . –0.3 V to V
DD
+ 0.3 V
Reference Input Voltage to GND . . . . –0.3 V to V
DD
+ 0.3 V
V
OUT
to GND . . . . . . . . . . . . . . . . . . . –0.3 V to V
得益于优异的照明特性和效率,高功率 LED 在汽车外部照明设计中越来越流行。支持 LED 的电子器件必须快速、高效、高精度,以控制照明强度、方向和聚焦。这些器件必须支持较宽的输入电压范围,且能够在汽车无线电的 AM 频段范围之外工作,以避免电磁干扰(EMI)。电子器件还必须支持 LED 矩阵中要求的复杂照明模式,以支持自适应前灯照明系统。本文回顾典型的 LED 电源管理方案,并介绍支持快速、高效...[详细]