D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
a
FEATURES
Wide Bandwidth
AD9631, G = +1
AD9632, G = +2
Small Signal
320 MHz
250 MHz
Large Signal (4 V p-p)
175 MHz
180 MHz
Ultralow Distortion (SFDR), Low Noise
–113 dBc Typ @ 1 MHz
–95 dBc Typ @ 5 MHz
–72 dBc Typ @ 20 MHz
46 dBm Third Order Intercept @ 25 MHz
7.0 nV/
÷
Hz
Spectral Noise Density
High Speed
Slew Rate 1300 V/ s
Settling 16 ns to 0.01%, 2 V Step
3 V to 5 V Supply Operation
17 mA Supply Current
APPLICATIONS
ADC Input Driver
Differential Amplifiers
IF/RF Amplifiers
Pulse Amplifiers
Professional Video
DAC Current to Voltage
Baseband and Video Communications
Pin Diode Receivers
Active Filters/Integrators/Log Amps
Ultralow Distortion, Wide Bandwidth
Voltage Feedback Op Amps
AD9631/AD9632
PIN CONFIGURATION
8-Lead PDIP (N)
and SOIC (R) Packages
AD9631/
AD9632
NC
1
–INPUT
2
+INPUT
3
–V
S 4
8
NC
7
+V
S
6
OUTPUT
TOP VIEW
5
NC
NC = NO CONNECT
A proprietary design architecture has produced an amplifier
that combines many of the best characteristics of both current
feedback and voltage feedback amplifiers. The AD9631 and
AD9632 exhibit exceptionally fast and accurate pulse response
(16 ns to 0.01%) as well as extremely wide small signal and large
signal bandwidth and ultralow distortion. The AD9631 achieves
–72 dBc at 20 MHz, and 320 MHz small signal and 175 MHz
large signal bandwidths.
These characteristics position the AD9631/AD9632 ideally for
driving flash as well as high resolution ADCs. Additionally, the
balanced high impedance inputs of the voltage feedback archi-
tecture allow maximum flexibility when designing active filters.
The AD9631/AD9632 are offered in the industrial (–40 C to
+85 C) temperature range. They are available in PDIP and SOIC.
–30
V
S
= 5V
R
L
= 500
V
O
= 2V p-p
HARMONIC DISTORTION – dBc
–50
–70
GENERAL DESCRIPTION
The AD9631 and AD9632 are very high speed and wide band-
width amplifiers. They are an improved performance alternative
to the AD9621 and AD9622. The AD9631 is unity gain stable.
The AD9632 is stable at gains of 2 or greater. Using a voltage
feedback architecture, the AD9631/AD9632’s exceptional settling
time, bandwidth, and low distortion meet the requirements of
many applications that previously depended on current feedback
amplifiers. Its classical op amp structure works much more
predictably in many designs.
–90
SECOND HARMONIC
–110
THIRD HARMONIC
–130
10k
100k
1M
FREQUENCY – Hz
10M
100M
Figure 1. AD9631 Harmonic Distortion vs.
Frequency, G = +1
REV. C
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective companies.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© 2003 Analog Devices, Inc. All rights reserved.
AD9631/AD9632–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
Parameter
DYNAMIC PERFORMANCE
Bandwidth (–3 dB)
Small Signal
Large Signal
1
Bandwidth for 0.1 dB Flatness
Slew Rate, Average
±
Rise/Fall Time
Settling Time
To 0.1%
To 0.01%
HARMONIC/NOISE PERFORMANCE
Second Harmonic Distortion
Third Harmonic Distortion
Third Order Intercept
Noise Figure
Input Voltage Noise
Input Current Noise
Average Equivalent Integrated
Input Noise Voltage
Differential Gain Error (3.58 MHz)
Differential Phase Error (3.58 MHz)
Phase Nonlinearity
DC PERFORMANCE
2,
R
L
= 150
W
Input Offset Voltage
3
T
MIN
–T
MAX
Offset Voltage Drift
Input Bias Current
T
MIN
–T
MAX
Input Offset Current
Common-Mode Rejection Ratio
Open-Loop Gain
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
OUTPUT CHARACTERISTICS
Output Voltage Range, R
L
= 150
W
Output Current
Output Resistance
Short Circuit Current
POWER SUPPLY
Operating Range
Quiescent Current
Power Supply Rejection Ratio
T
MIN
–T
MAX
T
MIN
–T
MAX
T
MIN
–T
MAX
V
CM
=
±
2.5 V
V
OUT
=
±
2.5 V
T
MIN
–T
MAX
70
46
40
0.1
90
52
( V
S
=
5 V; R
LOAD
= 100
; A
V
= 1 (AD9631); A
V
= 2 (AD9632), unless otherwise noted.)
AD9631A
Min Typ Max
AD9632A
Min Typ Max
Unit
Conditions
V
OUT
0.4 V p-p
V
OUT
= 4 V p-p
V
OUT
= 300 mV p-p
AD9631, R
F
= 140
W;
AD9632, R
F
= 425
W
V
OUT
= 4 V Step
V
OUT
= 0.5 V Step
V
OUT
= 4 V Step
V
OUT
= 2 V Step
V
OUT
= 2 V Step
2 V p-p; 20 MHz, R
L
= 100
W
R
L
= 500
W
2 V p-p; 20 MHz, R
L
= 100
W
R
L
= 500
W
25 MHz
R
S
= 50
W
1 MHz to 200 MHz
1 MHz to 200 MHz
0.1 MHz to 200 MHz
R
L
= 150
W
R
L
= 150
W
DC to 100 MHz
220
150
320
175
130
180
155
250
180
130
MHz
MHz
MHz
V/ms
ns
ns
ns
ns
–47
–65
–67
–74
dBc
dBc
dBc
dBc
dBm
dB
nV/÷Hz
pA/÷Hz
mV
rms
%
Degree
Degree
mV
mV
mV/
C
mA
mA
mA
mA
dB
dB
dB
kW
pF
V
V
mA
W
mA
V
mA
mA
dB
1000 1300
1.2
2.5
11
16
–64
–72
–76
–81
46
18
7.0
2.5
100
0.03
0.02
1.1
3
±
10
2
–57
–65
–69
–74
1200 1500
1.4
2.1
11
16
–54
–72
–74
–81
41
14
4.3
2.0
0.06
0.04
60
0.02 0.04
0.02 0.04
1.1
2
5
8
10
13
7
10
3
5
70
46
40
±
10
2
7
10
0.1 3
5
90
52
500
1.2
±
3.4
±
3.2
±
3.9
70
0.3
240
±
3.0
±
5.0
±
6.0
17
18
21
50
60
500
1.2
±
3.4
±
3.2
±
3.9
70
0.3
240
±
3.0
±
5.0
±
6.0
16 17
20
56
66
NOTES
1
See Absolute Maximum Ratings and Theory of Operation sections of this data sheet.
2
Measured at A
V
= 50.
3
Measured with respect to the inverting input.
Specifications subject to change without notice.
–2–
REV. C
AD9631/AD9632
ABSOLUTE MAXIMUM RATINGS
1
MAXIMUM POWER DISSIPATION
Supply Voltage (+V
S
to –V
S
) . . . . . . . . . . . . . . . . . . . . . 12.6 V
Voltage Swing
¥
Bandwidth Product . . . . . . . . . . . 550 V-MHz
Internal Power Dissipation
2
Plastic Package (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W
Small Outline Package (R) . . . . . . . . . . . . . . . . . . . . . . 0.9 W
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . .
±
V
S
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . .
±
1.2 V
Output Short Circuit Duration
. . . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves
Storage Temperature Range N, R . . . . . . . . . –65 C to +125 C
Operating Temperature Range (A Grade) . . . . –40 C to +85 C
Lead Temperature Range (Soldering 10 sec) . . . . . . . . . 300 C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
Specification is for device in free air:
8-Lead PDIP Package:
q
JA
= 90∞C/W
8-Lead SOIC Package:
q
JA
= 140∞C/W
The maximum power that can be safely dissipated by these
devices is limited by the associated rise in junction temperature.
The maximum safe junction temperature for plastic encapsulated
devices is determined by the glass transition temperature of the
plastic, approximately 150 C. Exceeding this limit temporarily
may cause a shift in parametric performance due to a change in
the stresses exerted on the die by the package. Exceeding a junc-
tion temperature of 175 C for an extended period can result in
device failure.
While the AD9631 and AD9632 are internally short circuit
protected, this may not be sufficient to guarantee that the maxi-
mum junction temperature (150 C) is not exceeded under all
conditions. To ensure proper operation, it is necessary to observe
the maximum power derating curves.
2.0
T
J
= +150 C
MAXIMUM POWER DISSIPATION – W
8-LEAD PDIP PACKAGE
1.5
METALLIZATION PHOTO
Dimensions shown in inches and (millimeters)
Connect Substrate to –V
S
–IN
2
+V
S
7
1.0
8-LEAD SOIC PACKAGE
0.5
0
–50 –40 –30 –20 –10
0.046
(1.17)
0
10 20
30
40 50
60 70
80 90
AMBIENT TEMPERATURE – C
6
OUT
Figure 2. Maximum Power Dissipation
vs. Temperature
ORDERING GUIDE
3
+IN
–IN
2
4
–V
S
0.050 (1.27)
AD9631
+V
S
7
Model
AD9631AN
AD9631AR
AD9631AR-REEL
AD9631AR-REEL7
AD9631CHIPS
AD9632AN
AD9632AR
AD9632AR-REEL
AD9632AR-REEL7
Temperature
Range
–40∞C to +85∞C
–40∞C to +85∞C
–40∞C to +85∞C
–40∞C to +85∞C
–40∞C to +85∞C
–40∞C to +85∞C
–40∞C to +85∞C
–40∞C to +85∞C
Package
Package
Description Option
PDIP
SOIC
SOIC
SOIC
Die
PDIP
SOIC
SOIC
SOIC
N-8
R-8
R-8
R-8
N-8
R-8
R-8
R-8
0.046
(1.17)
6
OUT
3
+IN
4
–V
S
AD9632
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although the
AD9631/AD9632 features proprietary ESD protection circuitry, permanent damage may occur on
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
REV. C
–3–
AD9631/AD9632–Typical Performance Characteristics
R
F
+V
S
10 F
0.1 F
PULSE
GENERATOR
T
R
/T
F
= 350ps
V
IN
R
T
49.9
PULSE
GENERATOR
T
R
/T
F
= 350ps
V
IN
267
R
T
49.9
R
F
+V
S
10 F
0.1 F
AD9631
130
0.1 F
10 F
–V
S
V
OUT
R
L
= 100
AD9631
0.1 F
V
OUT
R
L
= 100
100
10 F
–V
S
TPC 1. AD9631 Noninverting Configuration, G = +1
TPC 4. AD9631 Inverting Configuration, G = –1
1V
5ns
1V
5ns
TPC 2. AD9631 Large Signal Transient Response;
V
O
= 4 V p-p, G = +1, R
F
= 250
W
TPC 5. AD9631 Large Signal Transient Response;
V
O
= 4 V p-p, G = –1, R
F
= R
IN
= 267
W
100mV
5ns
100mV
5ns
TPC 3. AD9631 Small Signal Transient Response;
V
O
= 400 mV p-p, G = +1, R
F
= 140
W
TPC 6. AD9631 Small Signal Transient Response;
V
O
= 400 mV p-p, G = –1, R
F
= R
IN
= 267
W
–4–
REV. C