APT150GN120JDQ4
1200V, 150A, V
CE(ON)
= 3.2V Typical
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT’s have ultra
low V
CE(ON)
and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and a
slightly positive V
CE(ON)
temperature coefficient. A built-in gate resistor ensures extremely
reliable operation, even in the event of a short cuircuit fault. Low gate charge simplifies
gate drive design and minimizes losses.
• 1200V Field Stop
• Trench Gate: Low V
CE(ON)
• Easy Paralleling
• Integrated Gate Resistor: Low EMI, High Reliability
• RoHS Compliant
E
G
C
E
SO
2
T-
27
"UL Recognized"
ISOTOP
®
file # E145592
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
Maximum Ratings
Symbol Parameter
V
CES
V
GE
I
C1
I
C2
I
CM
SSOA
P
D
T
J
, T
STG
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current @ T
C
= 25°C
Continuous Collector Current @ T
C
= 100°C
Pulsed Collector Current
1
Switching Safe Operating Area @ T
J
= 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
All Ratings: T
C
= 25°C unless otherwise specified.
Ratings
1200
±30
215
99
450
450A @ 1200V
625
-55 to 150
Watts
°C
Amps
Unit
Volts
Static Electrical Characteristics
Symbol Characteristic / Test Conditions
V
(BR)CES
V
GE(TH)
V
CE(ON)
I
CES
I
GES
R
G(int)
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 6mA)
Gate Threshold Voltage (V
CE
= V
GE
, I
C
= 6mA, T
j
= 25°C)
Collector Emitter On Voltage (V
GE
= 15V, I
C
= 150A, T
j
= 25°C)
Collector Emitter On Voltage (V
GE
= 15V, I
C
= 150A, T
j
= 125°C)
Collector Cut-off Current (V
CE
= 1200V, V
GE
= 0V, T
j
= 25°C)
2
Collector Cut-off Current (V
CE
= 1200V, V
GE
= 0V, T
j
= 125°C)
2
Gate-Emitter Leakage Current (V
GE
= ±20V)
Integrated Gate Resistor
Min
1200
5.0
1.4
-
-
-
-
-
Typ
-
5.8
1.7
2.08
-
-
-
5
Max
-
6.5
2.1
-
300
TBD
600
-
Unit
Volts
μA
nA
Ω
050-7627 Rev A 01-2008
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed
.
Microsemi Website - http://www.microsemi.com
Dynamic Characteristic
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector Charge
Switching Safe Operating Area
Turn-On Delay Time
Current Rise Time
Turn-Off Delay Time
Current Fall Time
Turn-On Switching Energy
4
Turn-On Switching Energy
5
APT150GN120JDQ4
Test Conditions
V
GE
= 0V, V
CE
= 25V
f = 1MHz
Gate Charge
V
GE
= 15V
V
CE
= 600V
I
C
= 150A
T
J
= 150°C, R
G
= 1.0Ω
7
, V
GE
= 15V,
L = 100μH, V
CE
= 1200V
Inductive Switching (25°C)
V
CC
= 800V
V
GE
= 15V
I
C
= 150A
R
G
= 1.0Ω
7
T
J
= +25°C
Min
-
-
-
-
-
-
-
450
-
-
-
-
-
-
-
-
Inductive Switching (125°C)
V
CC
= 800V
V
GE
= 15V
4
Typ
9500
500
400
9.5
800
70
430
Max
-
-
-
-
-
-
-
Unit
pF
V
nC
A
55
65
675
85
22
27
15
55
65
780
175
23
35
22
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mJ
ns
μJ
ns
Turn-Off Switching Energy
6
Turn-On Delay Time
Current Rise Time
Turn-Off Delay Time
Current Fall Time
Turn-On Switching Energy
-
-
-
-
-
-
I
C
= 150A
R
G
= 1.0Ω
7
T
J
= +125°C
Turn-On Switching Energy
5
Turn-Off Switching Energy
6
Thermal and Mechanical Characteristics
Symbol Characteristic / Test Conditions
R
R
θ
JC
θ
JC
Min
-
-
-
-
-
2500
Typ
-
-
29.2
-
-
-
Max
0.20
Unit
°C/W
Junction to Case
(IGBT)
Junction to Case
(DIODE)
Package Weight
Terminals and Mounting Screws.
RMS Voltage
(50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
0.56
-
10
1.1
-
g
in·lbf
N·m
Volts
W
T
Torque
V
Isolation
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, I
ces
includes both IGBT and FRED leakages.
3 See MIL-STD-750 Method 3471.
4 E
on1
is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in
fi
gure 21, but with a Silicon Carbide diode.
5 E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 E
off
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 R
G
is external gate resistance not including gate driver impedance.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
050-7627 Rev A 01-2008
Typical Performance Curves
300
V
GE
APT150GN120JDQ4
300
6V
I
C
, COLLECTOR CURRENT (A)
250
200
150
5V
100
50
0
4.5V
4V
5.5V
6.5V, 10 &15 V
= 15V
I
C
, COLLECTOR CURRENT (A)
250
200
T
J
= -55°C
T
J
= 25°C
T
J
= 125°C
T
J
= 150°C
150
100
50
0
0
1
2
3
4
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (T
J
= 25°C)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
0
5
10
15
20
25
30
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (T
J
= 25°C)
I = 100A
C
T = 25°C
J
300
250
16
14
12
10
8
6
4
2
0
0
V
CE
= 240V
V
CE
= 600V
I
C
, COLLECTOR CURRENT (A)
T
J
= -55°C
200
150
100
50
0
V
CE
= 960V
T
J
= 25°C
T
J
= 125°C
0
2
4
6
8
10
12
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
T
J
= 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
200
400
600
800
GATE CHARGE (nC)
FIGURE 4, Gate charge
1000
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
V
GE
= 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
I
C
= 300A
I
C
= 300A
I
C
= 150A
I
C
= 75A
I
C
= 150A
I
C
= 75A
8
10
12
14
16
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
1.10
0
6
0
25 50 75 100 125 150
T
J
, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
300
250
200
150
050-7627 Rev A 01-2008
100
50
0
-50 -25
0
-50 -25
V
GS(TH)
, THRESHOLD VOLTAGE
(NORMALIZED)
1.05
1.00
0.95
0.90
0.85
0.80
0.75
-.50 -.25
I
C
, DC COLLECTOR CURRENT (A)
0
25
50 75 100 125 150
T
J
, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
0
25 50
75 100 125 150
T
C
, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Typical Performance Curves
60
50
40
30
20
10
0
V
CE
= 800V
T
J
= 25°C
,
or 125°C
R
G
= 1.0Ω
L = 100μH
APT150GN120JDQ4
1000
t
d(OFF)
, TURN-OFF DELAY TIME (ns)
V
GE
=15V,T
J
=125°C
t
d(ON)
, TURN-ON DELAY TIME (ns)
V
GE
= 15V
800
600
V
GE
=15V,T
J
=25°C
400
200
V
CE
=
800V
R
G
=
1.0Ω
L = 100μH
0
0
50
100 150 200 250 300 350
I
CE
, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
250
T
J
=
125°C, V
GE
=
15V
0
50 100 150 200 250 300 350
I
CE
, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
R
G
=
1.0Ω, L
=
100
μ
H, V
CE
=
800V
400
350
300
t
r
, RISE TIME (ns)
250
200
150
100
50
0
T
J
=
25 or 125°C,V
GE
=
15V
200
t
r
, FALL TIME (ns)
150
100
T
J
=
25°C, V
GE
=
15V
50
E
OFF
,
TURN OFF ENERGY LOSS (mJ)
0
50
100 150 200 250 300 350
I
CE
, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
120
E
on2
,
TURN ON ENERGY LOSS (mJ)
100
80
60
40
20
0
T
J
=
25°C
V
= 800V
CE
V
= +15V
GE
R = 1Ω
G
0
50
100 150 200 250 300 350
I
CE
, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
50
45
40
35
30
25
20
15
10
5
0
50
100 150 200 250 300 350
I
CE
, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
120
SWITCHING ENERGY LOSSES (mJ)
100
80
60
E
off,
300A
V
= 800V
CE
V
= +15V
GE
R = 1Ω
G
0
R
G
=
1.0Ω, L
=
100
μ
H, V
CE
=
800V
V
= 800V
CE
V
= +15V
GE
R = 1Ω
G
T
J
=
125°C
T
J
=
125°C
T
J
=
25°C
0
50 100 150 200 250 300 350
I
CE
, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
200
SWITCHING ENERGY LOSSES (mJ)
V
= 800V
CE
V
= +15V
GE
T = 125°C
J
0
E
on2,
300A
E
on2,
300A
160
120
80
E
off,
300A
E
on2,
150A
E
off,
150A
E
on2,
75A
050-7627 Rev A 01-2008
40
20
0
E
on2,
150A
E
off,
150A
E
on2,
75A
E
off,
75A
40
5
10
15
20
R
G
, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
0
E
off,
75A
0
25
50
75
100
125
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
Typical Performance Curves
10,000
500
450
C
ies
I
C
, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
400
350
300
250
200
150
100
50
APT150GN120JDQ4
1000
C
oes
100
C
res
0
10
20
30
40
50
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
10
0
200 400 600 800 1000 1200 1400
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0
0.25
Z
θ
JC
, THERMAL IMPEDANCE (°C/W)
D = 0.9
0.20
0.15
0.7
0.5
0.3
Note:
0.10
PDM
t1
t2
0.05
0.1
0
10
-5
0.05
10
-4
SINGLE PULSE
Duty Factor D =
1
/
t2
Peak TJ = PDM x Z
θJC
+ TC
t
10
-3
10
-2
10
-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
50
F
MAX
, OPERATING FREQUENCY (kHz)
25°C
40
T = 125
°
C
J
T = 75
°
C
C
D = 50 %
V
= 800V
CE
R = 4.7Ω
G
F
max
= min (f
max
, f
max2
)
f
max1
=
f
max2
=
0.05
t
d(on)
+ t
r
+ t
d(off)
+ t
f
P
diss
- P
cond
E
on2
+ E
off
T
J
- T
C
R
θJC
30
T
J
(°C)
T
C
(°C)
Dissipated Power
(Watts)
Z
EXT
.045
.025
.0132
.569
.022
30.75
20
75°C
10
P
diss
=
Z
EXT
are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
50
100
150
200
250
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
0
0
050-7627 Rev A 01-2008