APT65GP60B2
600V
POWER MOS 7 IGBT
T-Max
TM
®
The POWER MOS 7
®
IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
G
C
• Low Conduction Loss
• Low Gate Charge
• Ultrafast Tail Current shutoff
• 100 kHz operation @ 400V, 54A
• 50 kHz operation @ 400V, 76A
• SSOA rated
E
C
G
E
MAXIMUM RATINGS
Symbol
V
CES
V
GE
V
GEM
I
C1
I
C2
I
CM
SSOA
P
D
T
J
,T
STG
T
L
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Gate-Emitter Voltage Transient
Continuous Collector Current
7
All Ratings: T
C
= 25°C unless otherwise specified.
APT65GP60B2
UNIT
600
±20
±30
@ T
C
= 25°C
Volts
100
96
250
250A@600V
833
-55 to 150
300
Watts
°C
Amps
Continuous Collector Current @ T
C
= 110°C
Pulsed Collector Current
1
@ T
C
= 25°C
Safe Operating Area @ T
J
= 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
Symbol
BV
CES
V
GE(TH)
V
CE(ON)
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 1000µA)
Gate Threshold Voltage
(V
CE
= V
GE
, I
C
= 2.5mA, T
j
= 25°C)
MIN
TYP
MAX
UNIT
600
3
4.5
2.2
2.1
1000
µA
nA
4-2003
050-7438
Rev A
6
2.7
Volts
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 65A, T
j
= 25°C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 65A, T
j
= 125°C)
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 25°C)
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 125°C)
Gate-Emitter Leakage Current (V
GE
= ±20V)
2
2
I
CES
I
GES
5000
±100
CAUTION:
These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
DYNAMIC CHARACTERISTICS
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
APT65GP60B2
Test Conditions
Capacitance
V
GE
= 0V, V
CE
= 25V
f = 1 MHz
Gate Charge
V
GE
= 15V
V
CE
= 300V
I
C
= 65A
T
J
= 150°C, R
G
= 5Ω, V
GE
=
15V, L = 100µH,V
CE
= 600V
Inductive Switching (25°C)
V
CC
= 400V
V
GE
= 15V
I
C
= 65A
4
5
MIN
TYP
MAX
UNIT
7400
580
35
7.5
210
50
65
250
30
54
91
65
605
1408
896
30
54
128
91
605
1925
1470
MIN
TYP
MAX
UNIT
°C/W
gm
ns
ns
A
nC
V
pF
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Safe Operating Area
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
Symbol
R
ΘJC
R
ΘJC
W
T
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
R
G
= 5Ω
T
J
= +25°C
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
6
µ
J
Inductive Switching (125°C)
V
CC
= 400V
V
GE
= 15V
I
C
= 65A
R
G
= 5Ω
5
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
6
T
J
= +125°C
µ
J
THERMAL AND MECHANICAL CHARACTERISTICS
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
.15
N/A
6.10
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, I
ces
includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 E
on1
is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the E
on2
test circuit. (See Figures 21, 22.)
6 E
off
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JEDS24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
APT Reserves the right to change, without notice, the specifications and information contained herein.
050-7438
Rev A
4-2003
TYPICAL PERFORMANCE CURVES
100
90
I
C
, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT65GP60B2
100
90
I
C
, COLLECTOR CURRENT (A)
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
80
70
60
50
40
30
20
10
0
0
0.5
1
1.5
2
2.5
3
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(V
GE
= 15V)
250
T
C
=25°C
T
C
=125°C
T
C
=-55°C
80
70
60
50
40
30
20
10
0
0
0.5
1
1.5
2
2.5
3
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (V
GE
= 10V)
16
T
C
=25°C
T
C
=125°C
T
C
=-55°C
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
14
12
10
8
6
4
2
0
0
I
C
= 65A
T
J
= 25°C
I
C
, COLLECTOR CURRENT (A)
200
V
CE
=120V
V
CE
=300V
150
TJ = -55°C
100
TJ = 25°C
50
TJ = 125°C
0
0
2
3
4 5
6 7
8
9 10
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
V
CE
=480V
1
50
100
150
200
GATE CHARGE (nC)
FIGURE 4, Gate Charge
250
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
4
3.5
3
2.5
2
1.5
1
0.5
I
C
=130A
3
2.5
2
I
C
= 32.5A
1.5
I
C
=130A
I
C
= 65A
I
C
= 65A
I
C
= 32.5A
1
0.5
8
10
12
14
16
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.2
0
6
-25
0
25
50
75
100 125
T
J
, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
300
0
-50
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
BV
CES
, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
I
C,
DC COLLECTOR CURRENT(A)
1.15
1.10
1.05
1.0
0.95
0.9
0.85
0.8
-50
250
200
150
50
0
-50
050-7438
-25
0
25
50
75
100 125
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
-25
0
25 50 75 100 125 150
T
C
, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev A
4-2003
100
TYPICAL PERFORMANCE CURVES
60
t
d (OFF)
, TURN-OFF DELAY TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
APT65GP60B2
160
140
120
100
80
60
40
20
0
V
CE
= 400V
R
G
= 5Ω
L = 100 µH
V
GE
=
15V,T
J
=25°C
V
GE
=
10V,T
J
=25°C
V
GE
=10V,T
J
=125°C
V
GE
=
15V,T
J
=125°C
50
V
GE
= 10V
40
V
GE
= 15V
30
20
V
CE
= 400V
T
J
= 25°C or 125°C
R
G
= 5Ω
L = 100 µH
10
0
10
30
50
70
90
110
130
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
160
140
120
t
r,
RISE TIME (ns)
T
J
=
25 or 125°C,V
GE
=
10V
10
30
50
70
90
110
130
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
140
120
100
80
60
40
20
0
T
J
=
25°C, V
GE
=
10V or 15V
R
G
=
5Ω, L
=
100
µ
H, V
CE
=
400V
T
J
=
125°C, V
GE
=
10V or 15V
100
80
60
40
20
R
=
5Ω, L
=
100
µ
H, V
CE
=
400V
G
0
10
30
50
70
90
110
130
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
T
J
=
25 or 125°C,V
GE
=
15V
t
f,
FALL TIME (ns)
10
30
50
70
90
110
130
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
5000
E
OFF
, TURN OFF ENERGY LOSS (µJ)
V
CE
= 400V
L = 100 µH
R
G
= 5
Ω
6000
E
ON2
, TURN ON ENERGY LOSS (µJ)
5500
5000
4500
4000
3500
3000
2500
2000
1500
1000
V
CE
= 400V
L = 100 µH
R
G
= 5
Ω
T
J
=125°C, V
GE
=15V
T
J
=
125°C, V
GE
=
10V or 15V
4000
T
J
=125°C,V
GE
=10V
3000
2000
T
J
= 25°C, V
GE
=15V
1000
T
J
=
25°C, V
GE
=
10V or 15V
500
T
J
= 25°C, V
GE
=10V
0
10
30
50
70
90
110
130
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
9000
V
CE
= 400V
V
GE
= +15V
T
J
= 125°C
10
30
50
70
90
110
130
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
6000
V
CE
= 400V
V
GE
= +15V
R
G
= 5
Ω
0
E
on2
130A
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
8000
7000
6000
5000
4000
3000
2000
1000
0
0
E
on2
130A
E
off
130A
5000
4000
E
off
130A
E
on2
65A
3000
4-2003
2000
E
on2
65A
1000
E
on2
32.5A
0
-50
E
off
32.5A
E
off
65A
Rev A
E
off
65A
E
off
32.5A
E
on2
32.5A
050-7438
10
20
30
40
50
R
G
, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
-25
0
25
50
75
100 125
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
10,000
5,000
I
C
, COLLECTOR CURRENT (A)
APT65GP60B2
300
Cies
250
C, CAPACITANCE ( F)
1,000
500
Coes
P
200
150
100
50
Cres
100
50
0
0
100 200 300 400 500 600 700
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
10
0
10
20
30
40
50
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0.16
0.14
Z
θ
JC
, THERMAL IMPEDANCE (°C/W)
0.9
0.12
0.7
0.10
0.08
0.06
0.3
0.04
t2
0.5
Note:
PDM
t1
0.02
0
10
-5
0.1
0.05
10
-4
SINGLE PULSE
t
Duty Factor D = 1/t2
Peak TJ = PDM x Z
θJC
+ TC
10
-3
10
-2
10
-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
187
F
MAX
, OPERATING FREQUENCY (kHz)
RC MODEL
100
0.0683086
Junction
temp. ( ”C)
Power
(Watts)
0.0822491
0.0216664
50
0.2556989
Case temperature
T
J
= 125
°
C
T
C
= 75
°
C
D = 50 %
V
CE
= 400V
R
G
= 5
Ω
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
10
10
30
50
70
90
110
130
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
F
max
=
min(f
max1
, f
max 2
)
f
max1
=
f
max 2
=
P
diss
=
t
d (on )
0.05
+
t
r
+
t
d(off )
+
t
f
4-2003
050-7438
Rev A
P
diss
−
P
cond
E
on 2
+
E
off
T
J
−
T
C
R
θ
JC