首页 > 器件类别 > 分立半导体 > 晶体管

APT8020B2FLLG

Power Field-Effect Transistor, 38A I(D), 800V, 0.22ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, B2, T-MAX-3

器件类别:分立半导体    晶体管   

厂商名称:Microsemi

厂商官网:https://www.microsemi.com

器件标准:  

下载文档
APT8020B2FLLG 在线购买

供应商:

器件:APT8020B2FLLG

价格:-

最低购买:-

库存:点击查看

点击购买

器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
厂商名称
Microsemi
包装说明
IN-LINE, R-PSIP-T3
针数
3
Reach Compliance Code
compliant
Is Samacsys
N
雪崩能效等级(Eas)
3000 mJ
外壳连接
DRAIN
配置
SINGLE WITH BUILT-IN DIODE
最小漏源击穿电压
800 V
最大漏极电流 (ID)
38 A
最大漏源导通电阻
0.22 Ω
FET 技术
METAL-OXIDE SEMICONDUCTOR
JESD-30 代码
R-PSIP-T3
JESD-609代码
e1
元件数量
1
端子数量
3
工作模式
ENHANCEMENT MODE
最高工作温度
150 °C
封装主体材料
PLASTIC/EPOXY
封装形状
RECTANGULAR
封装形式
IN-LINE
峰值回流温度(摄氏度)
NOT SPECIFIED
极性/信道类型
N-CHANNEL
最大脉冲漏极电流 (IDM)
152 A
认证状态
Not Qualified
表面贴装
NO
端子面层
TIN SILVER COPPER
端子形式
THROUGH-HOLE
端子位置
SINGLE
处于峰值回流温度下的最长时间
NOT SPECIFIED
晶体管应用
SWITCHING
晶体管元件材料
SILICON
Base Number Matches
1
文档预览
APT8020B2FLL
APT8020LFLL
800V
38A 0.220
POWER MOS 7
®
R
FREDFET
B2FLL
Power MOS 7 is a new generation of low loss, high voltage, N-Channel
enhancement mode power MOSFETS. Both conduction and switching
®
losses are addressed with Power MOS 7 by significantly lowering R
DS(ON)
®
and Q
g
. Power MOS 7 combines lower conduction and switching losses
along with exceptionally fast switching speeds inherent with APT's
patented metal gate structure.
• Lower Input Capacitance
• Lower Miller Capacitance
• Lower Gate Charge, Qg
MAXIMUM RATINGS
Symbol
V
DSS
I
D
I
DM
V
GS
V
GSM
P
D
T
J
,T
STG
T
L
I
AR
E
AR
E
AS
Parameter
Drain-Source Voltage
Continuous Drain Current @ T
C
= 25°C
Pulsed Drain Current
1
T-MAX™
TO-264
LFLL
• Increased Power Dissipation
• Easier To Drive
• Popular
T-MAX™
or TO-264 Package
FAST RECOVERY BODY DIODE
D
G
S
All Ratings: T
C
= 25°C unless otherwise specified.
APT8020B2_LFLL
UNIT
Volts
Amps
800
38
152
±30
±40
694
5.56
-55 to 150
300
38
50
4
Gate-Source Voltage Continuous
Gate-Source Voltage Transient
Total Power Dissipation @ T
C
= 25°C
Linear Derating Factor
Operating and Storage Junction Temperature Range
Lead Temperature: 0.063" from Case for 10 Sec.
Avalanche Current
1
Volts
Watts
W/°C
°C
Amps
mJ
(Repetitive and Non-Repetitive)
1
Repetitive Avalanche Energy
Single Pulse Avalanche Energy
3000
STATIC ELECTRICAL CHARACTERISTICS
Symbol
BV
DSS
R
DS(on)
I
DSS
I
GSS
V
GS(th)
Characteristic / Test Conditions
Drain-Source Breakdown Voltage (V
GS
= 0V, I
D
= 250µA)
Drain-Source On-State Resistance
2
MIN
TYP
MAX
UNIT
Volts
800
0.220
250
1000
±100
3
5
(V
GS
= 10V, I
D
= 19A)
Ohms
µA
nA
Volts
5-2006
050-7078 Rev C
Zero Gate Voltage Drain Current (V
DS
= 800V, V
GS
= 0V)
Zero Gate Voltage Drain Current (V
DS
= 640V, V
GS
= 0V, T
C
= 125°C)
Gate-Source Leakage Current (V
GS
= ±30V, V
DS
= 0V)
Gate Threshold Voltage (V
DS
= V
GS
, I
D
= 2.5mA)
CAUTION:
These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
DYNAMIC CHARACTERISTICS
Symbol
C
iss
C
oss
C
rss
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
on
E
off
Symbol
I
S
I
SM
V
SD
dv
/
dt
APT8020B2_LFLL
Test Conditions
V
GS
= 0V
V
DS
= 25V
f = 1 MHz
V
GS
= 10V
V
DD
= 400V
I
D
= 38A @ 25°C
RESISTIVE SWITCHING
V
GS
= 15V
V
DD
= 400V
I
D
= 38A @ 25°C
6
INDUCTIVE SWITCHING @ 25°C
V
DD
= 533V, V
GS
= 15V
INDUCTIVE SWITCHING @ 125°C
V
DD
= 533V V
GS
= 15V
I
D
= 38A, R
G
= 5Ω
I
D
= 38A, R
G
= 5Ω
R
G
= 0.6Ω
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Total Gate Charge
3
MIN
TYP
MAX
UNIT
pF
5200
1000
190
195
27
130
12
14
39
9
875
825
1450
985
MIN
TYP
MAX
Gate-Source Charge
Gate-Drain ("Miller") Charge
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
Turn-on Switching Energy
Turn-off Switching Energy
Characteristic / Test Conditions
Continuous Source Current (Body Diode)
Pulsed Source Current
Diode Forward Voltage
Peak Diode Recovery
1
2
6
nC
ns
µ
J
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
UNIT
Amps
Volts
V/ns
ns
µC
Amps
38
152
1.3
18
T
j
= 25°C
T
j
= 125°C
T
j
= 25°C
T
j
= 125°C
T
j
= 25°C
T
j
= 125°C
MIN
(Body Diode)
(V
GS
= 0V, I
S
= -38A)
dv
/
5
dt
t
rr
Q
rr
I
RRM
Reverse Recovery Time
(I
S
= -38A,
di
/
dt
= 100A/µs)
Reverse Recovery Charge
(I
S
= -38A,
di
/
dt
= 100A/µs)
Peak Recovery Current
(I
S
= -38A,
di
/
dt
= 100A/µs)
Characteristic
Junction to Case
Junction to Ambient
320
650
1.4
5.9
10.8
18.9
TYP
MAX
THERMAL CHARACTERISTICS
Symbol
R
θJC
R
θJA
UNIT
°C/W
0.18
40
1 Repetitive Rating: Pulse width limited by maximum junction
temperature
2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%
3 See MIL-STD-750 Method 3471
0.20
Z
JC
, THERMAL IMPEDANCE (°C/W)
θ
4 Starting T
j
= +25°C, L = 4.16mH, R
G
= 25Ω, Peak I
L
= 38A
5
dv
/
dt
numbers reflect the limitations of the test circuit rather than the
device itself.
IS
-
ID
38A
di
/
dt
700A/µs
VR
800
TJ
150
°
C
6 Eon includes diode reverse recovery. See figures 18, 20.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
0.16
0.9
0.7
0.12
0.5
0.08
0.3
0.04
0.1
0.05
0
10
-5
10
-4
SINGLE PULSE
5-2006
Note:
PDM
t1
t2
Duty Factor D = t1/t
2
Peak TJ = PDM x Z
θJC
+ TC
050-7078 Rev C
10
-3
10
-2
10
-1
RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
1.0
Typical Performance Curves
100
VGS =15 &10 V
APT8020B2_LFLL
8V
7V
I
D
, DRAIN CURRENT (AMPERES)
80
T
J
( C)
0.0271
Dissipated Power
(Watts)
0.00899
0.0202
0.293
0.0656
T
C
( C)
0.0860
60
6.5V
40
6V
20
5.5V
5V
0
5
10
15
20
25
30
V
DS
, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
FIGURE 3, LOW VOLTAGE OUTPUT CHARACTERISTICS
1.40
V
GS
Z
EXT
are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
Z
EXT
0
R
DS
(ON), DRAIN-TO-SOURCE ON RESISTANCE
FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL
120
100
80
60
40
20
0
TJ = +125°C
TJ = -55°C
TJ = +25°C
VDS> ID (ON) x RDS (ON)MAX.
250µSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
NORMALIZED TO
= 10V @ I = 19A
D
I
D
, DRAIN CURRENT (AMPERES)
1.30
1.20
1.10
1.00
0.90
0.80
VGS=10V
VGS=20V
0
2
4
6
8
10
V
GS
, GATE-TO-SOURCE VOLTAGE (VOLTS)
FIGURE 4, TRANSFER CHARACTERISTICS
0
40
35
I
D
, DRAIN CURRENT (AMPERES)
BV
DSS
, DRAIN-TO-SOURCE BREAKDOWN
VOLTAGE (NORMALIZED)
1.15
10
20
30
40
50 60 70
80
I
D
, DRAIN CURRENT (AMPERES)
FIGURE 5, R
DS
(ON) vs DRAIN CURRENT
30
25
20
15
10
5
0
25
1.10
1.05
1.00
0.95
R
DS
(ON), DRAIN-TO-SOURCE ON RESISTANCE
(NORMALIZED)
50
75
100
125
150
T
C
, CASE TEMPERATURE (°C)
FIGURE 6, MAXIMUM DRAIN CURRENT vs CASE TEMPERATURE
2.5
I
V
D
0.90
-50
-25
0
25
50 75 100 125 150
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 7, BREAKDOWN VOLTAGE vs TEMPERATURE
1.2
1.1
1.0
0.9
0.8
0.7
0.6
-50
= 19A
= 10V
2.0
1.5
1.0
V
GS
(TH), THRESHOLD VOLTAGE
(NORMALIZED)
GS
0.5
0.0
-50
-25
0
25 50
75 100 125 150
T
J
, JUNCTION TEMPERATURE (°C)
-25
0
25
50
75 100 125 150
T
C
, CASE TEMPERATURE (°C)
050-7078 Rev C
5-2006
Typical Performance Curves
152
100
I
D
, DRAIN CURRENT (AMPERES)
OPERATION HERE
LIMITED BY RDS (ON)
20,000
10,000
APT8020B2_LFLL
50
C, CAPACITANCE (pF)
Ciss
100µS
10
1,000
Coss
1mS
TC =+25°C
TJ =+150°C
SINGLE PULSE
1
10
100
800
V
DS
, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
FIGURE 10, MAXIMUM SAFE OPERATING AREA
I
D
1
10mS
100
Crss
0
10
20
30
40
50
V
DS
, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
FIGURE 11, CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE
I
DR
, REVERSE DRAIN CURRENT (AMPERES)
V
GS
, GATE-TO-SOURCE VOLTAGE (VOLTS)
16
= 38A
200
100
TJ =+150°C
TJ =+25°C
10
12
VDS=160V
8
VDS=400V
VDS=640V
4
50
100
150
200
250
Q
g
, TOTAL GATE CHARGE (nC)
FIGURE 12, GATE CHARGES vs GATE-TO-SOURCE VOLTAGE
200
180
160
t
d(off)
0
0
1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
V
SD
, SOURCE-TO-DRAIN VOLTAGE (VOLTS)
FIGURE 13, SOURCE-DRAIN DIODE FORWARD VOLTAGE
100
V
DD
G
= 533V
R
= 5Ω
80
V
DD
G
T = 125°C
J
L = 100µH
t
d(on)
and t
d(off)
(ns)
140
120
100
80
60
40
20
0
10
= 533V
R
= 5Ω
T = 125°C
J
L = 100µH
t
r
and t
f
(ns)
60
t
f
40
t
r
t
d(on)
20
I
D
(A)
FIGURE 14, DELAY TIMES vs CURRENT
DD
G
20
30
40
50
60
2500
V
= 533V
40
50
60
I
D
(A)
FIGURE 15, RISE AND FALL TIMES vs CURRENT
6000
V
I
DD
0
10
20
30
= 533V
R
= 5Ω
SWITCHING ENERGY (µJ)
2000
SWITCHING ENERGY (µJ)
T = 125°C
J
5000
4000
3000
2000
1000
0
D
J
= 38A
T = 125°C
L = 100µH
E
ON
includes
diode reverse recovery.
L = 100µH
E
ON
includes
diode reverse recovery.
E
off
1500
E
on
1000
E
off
E
on
5-2006
500
050-7078 Rev C
I
D
(A)
FIGURE 16, SWITCHING ENERGY vs CURRENT
0
10
20
30
40
50
60
10 15 20 25 30 35 40 45 50
R
G
, GATE RESISTANCE (Ohms)
FIGURE 17, SWITCHING ENERGY VS. GATE RESISTANCE
0
5
Typical Performance Curves
90%
APT8020B2_LFLL
10%
Gate Voltage
T 125°C
J
Gate Voltage
T
J
125°C
t
d(on)
t
r
90%
5%
10%
Switching Energy
5%
Drain Voltage
Drain Current
t
d(off)
90%
Drain Voltage
t
f
10%
0
Drain Current
Switching Energy
Figure 18, Turn-on Switching Waveforms and Definitions
Figure 19, Turn-off Switching Waveforms and Definitions
APT30DF100
V
DD
I
D
V
DS
G
D.U.T.
Figure 20, Inductive Switching Test Circuit
T-MAX
TM
(B2) Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
TO-264 (L) Package Outline
4.60 (.181)
5.21 (.205)
1.80 (.071)
2.01 (.079)
19.51 (.768)
20.50 (.807)
3.10 (.122)
3.48 (.137)
5.79 (.228)
6.20 (.244)
Drain
20.80 (.819)
21.46 (.845)
Drain
25.48 (1.003)
26.49 (1.043)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
2.29 (.090)
2.69 (.106)
19.81 (.780)
21.39 (.842)
2.29 (.090)
2.69 (.106)
1.01 (.040)
1.40 (.055)
Gate
Drain
Source
0.48 (.019)
0.84 (.033)
2.59 (.102)
3.00 (.118)
Source
0.76 (.030)
1.30 (.051)
2.79 (.110)
3.18 (.125)
5.45 (.215) BSC
2-Plcs.
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
These dimensions are equal to the TO-247 without the mounting hole.
Dimensions in Millimeters and (Inches)
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103
5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
050-7078 Rev C
5-2006
19.81 (.780)
20.32 (.800)
Gate
Drain
查看更多>
IMP813L
那位大哥大姐用过IMP813L看门狗芯片啊,求帮助,求解脱。 WDI喂狗信号都放软件延时函数里了(W...
zhangyuebin 51单片机
ARM真的全面入侵白电市场吗?
兄弟们有没有注意到基于 ARM 内核的 MCU 不仅在便携终端所向披靡,在家电也来时汹汹啊...
uu5001 嵌入式系统
USB3.0物理层发送端测试方案
USB3.0物理层发送端测试方案 USB3.0物理层发送端测试方案 挺有用的,谢谢分享啊,哈哈 ...
安_然 测试/测量
【STM32MP135F-DK】硬件资源测试,点亮一个LED
LED资源概览 在STM32MP135F-DK Discovery套件上,GPIO分配如下: ...
fangkaixin stm32/stm8
SP232EEN,MAX232等一些芯片的供电电流,供电电压和绝对最大额定功率有什么关系
我想用电池供电,想先计算一下所有芯片的耗电量,但是很多芯片的datasheetl里面都有供电电压范围...
longhui520 分立器件
【Follow me第二季第3期】 EK-RA6M5 开发前准备工作
这个周末先做一些准备工作,Digikey的直播不知道为啥突然延期了,也只能做这个了。 第一...
breeze_i DigiKey得捷技术专区
热门器件
热门资源推荐
器件捷径:
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF EG EH EI EJ EK EL EM EN EO EP EQ ER ES ET EU EV EW EX EY EZ F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF FG FH FI FJ FK FL FM FN FO FP FQ FR FS FT FU FV FW FX FY FZ G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 GA GB GC GD GE GF GG GH GI GJ GK GL GM GN GO GP GQ GR GS GT GU GV GW GX GZ H0 H1 H2 H3 H4 H5 H6 H7 H8 HA HB HC HD HE HF HG HH HI HJ HK HL HM HN HO HP HQ HR HS HT HU HV HW HX HY HZ I1 I2 I3 I4 I5 I6 I7 IA IB IC ID IE IF IG IH II IK IL IM IN IO IP IQ IR IS IT IU IV IW IX J0 J1 J2 J6 J7 JA JB JC JD JE JF JG JH JJ JK JL JM JN JP JQ JR JS JT JV JW JX JZ K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 KA KB KC KD KE KF KG KH KI KJ KK KL KM KN KO KP KQ KR KS KT KU KV KW KX KY KZ
需要登录后才可以下载。
登录取消