ON Semiconductort
High Current Transistors
NPN Silicon
MAXIMUM RATINGS
Rating
Collector–Emitter Voltage
Collector–Base Voltage
Emitter–Base Voltage
Collector Current — Continuous
Total Device Dissipation @ T
A
= 25°C
Derate above 25°C
Total Device Dissipation @ T
C
= 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
Symbol
V
CEO
V
CBO
V
EBO
I
C
P
D
P
D
T
J
, T
stg
Value
80
80
5.0
0.5
625
5.0
1.5
12
–55 to +150
Unit
Vdc
Vdc
Vdc
Adc
BC489, A, B
1
mW
mW/°C
Watt
mW/°C
°C
2
3
CASE 29–04, STYLE 17
TO–92 (TO–226AA)
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Symbol
R
qJA
R
qJC
Max
200
83.3
Unit
°C/W
°C/W
2
BASE
COLLECTOR
1
3
EMITTER
ELECTRICAL CHARACTERISTICS
(T
A
= 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage
(1)
(I
C
= 10 mAdc, I
B
= 0)
Collector–Base Breakdown Voltage
(I
C
= 100
mAdc,
I
E
= 0)
Emitter–Base Breakdown Voltage
(I
E
= 10
mAdc,
I
C
= 0)
Collector Cutoff Current
(V
CB
= 60 Vdc, I
E
= 0)
V
(BR)CEO
V
(BR)CBO
V
(BR)EBO
I
CBO
80
80
5.0
—
—
—
—
—
—
—
—
100
Vdc
Vdc
Vdc
nAdc
ON CHARACTERISTICS*
DC Current Gain
(I
C
= 10 mAdc, V
CE
= 2.0 Vdc)
(I
C
= 100 mAdc, V
CE
= 2.0 Vdc)
h
FE
BC489
BC489A
BC489B
40
60
100
160
15
—
—
160
260
—
—
400
250
400
—
—
(I
C
= 1.0 Adc, V
CE
= 5.0 Vdc)*
1. Pulse Test: Pulse Width = 300
ms,
Duty Cycle 2%.
©
Semiconductor Components Industries, LLC, 2001
227
March, 2001 – Rev. 1
Publication Order Number:
BC489/D
BC489, A, B
ELECTRICAL CHARACTERISTICS
(T
A
= 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Typ
Max
Unit
ON CHARACTERISTICS*
(Continued)
Collector–Emitter Saturation Voltage
(I
C
= 500 mAdc, I
B
= 50 mAdc)
(I
C
= 1.0 Adc, I
B
= 100 mAdc)
Base–Emitter Saturation Voltage
(I
C
= 500 mAdc, I
B
= 50 mAdc)
(I
C
= 1.0 Adc, I
B
= 100 mAdc)
(1)
V
CE(sat)
—
—
V
BE(sat)
—
—
0.85
0.9
1.2
—
0.2
0.3
0.5
—
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Current–Gain — Bandwidth Product
(I
C
= 50 mAdc, V
CE
= 2.0 Vdc, f = 100 MHz)
Output Capacitance
(V
CB
= 10 Vdc, I
E
= 0, f = 1.0 MHz)
Input Capacitance
(V
EB
= 0.5 Vdc, I
C
= 0, f = 1.0 MHz)
1. Pulse Test: Pulse Width = 300
ms,
Duty Cycle 2.0%.
f
T
C
ob
C
ib
—
—
—
200
7.0
50
—
—
—
MHz
pF
pF
TURN-ON TIME
5.0
µs
+10 V
0
t
r
= 3.0 ns
-1.0 V
100
V
in
5.0
µF
R
B
100
V
CC
+40 V
R
L
OUTPUT
*C
S
< 6.0 pF
5.0
µs
t
r
= 3.0 ns
*Total Shunt Capacitance of Test Jig and Connectors
For PNP Test Circuits, Reverse All Voltage Polarities
V
in
TURN-OFF TIME
+V
BB
100
R
B
5.0
µF
100
V
CC
+40 V
R
L
OUTPUT
*C
S
< 6.0 pF
Figure 1. Switching Time Test Circuits
http://onsemi.com
228
BC489, A, B
BANDWIDTH PRODUCT (MHz)
300
200
V
CE
= 2.0 V
T
J
= 25°C
C, CAPACITANCE (pF)
80
60
40
C
ibo
T
J
= 25°C
100
70
50
20
f T, CURRENT-GAIN
10
8.0
6.0
C
obo
0.2
0.5 1.0 2.0
5.0 10
20
V
R
, REVERSE VOLTAGE (VOLTS)
50
100
30
2.0
3.0
5.0 7.0 10
20 30
50 70 100
I
C
, COLLECTOR CURRENT (mA)
200
4.0
0.1
Figure 2. Current–Gain — Bandwidth Product
Figure 3. Capacitance
1.0 k
700
500
300
200
t, TIME (ns)
100
70
50
30
20
V
CC
= 40 V
I
C
/I
B
= 10
I
B1
= I
B2
T
J
= 25°C
10
t
s
t
f
t
r
t
d
@ V
BE(off)
= 0.5 V
20 30
50 70 100
200 300
I
C
, COLLECTOR CURRENT (mA)
500
10
5.0 7.0
Figure 4. Switching Time
r(t) TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
1.0
0.7
0.5
0.3
0.2
D = 0.5
0.2
0.1
0.02
P
(pk)
t
1
t
2
0.1
0.07
0.05
0.03
0.02
0.01
1.0
0.01
SINGLE PULSE
SINGLE PULSE
Z
θJC(t)
= r(t)
•
R
θJC
Z
θJA(t)
= r(t)
•
R
θJA
20
50
100
200
500
t, TIME (ms)
1.0 k
2.0 k
DUTY CYCLE, D = t
1
/t
2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t
1
(SEE AN–469)
T
J(pk)
– T
C
= P
(pk)
Z
θJC(t)
T
J(pk)
– T
A
= P
(pk)
Z
θJA(t)
2.0
5.0
10
5.0 k
10 k
20 k
50 k 100 k
Figure 5. Thermal Response
http://onsemi.com
229
BC489, A, B
1.0 k
700
500
300
200
100
70
50
30
20
10
1.0
T
A
= 25°C
1.0 s
T
C
= 25°C
100
µs
1.0 ms
IC, COLLECTOR CURRENT (mA)
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
BC489
20 30
50
2.0 3.0
5.0 7.0 10
V
CE
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
70
100
Figure 6. Active Region — Safe Operating Area
400
T
J
=125°C
hFE , DC CURRENT GAIN
200
25°C
100
80
60
40
-55°C
V
CE
= 1.0 V
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
20
30
I
C
, COLLECTOR CURRENT (mA)
50
70
100
200
300
500
Figure 7. DC Current Gain
1.0
T
J
= 25°C
0.8
V, VOLTAGE (VOLTS)
V
BE(sat)
@ I
C
/I
B
= 10
0.6
0.4
0.2
0
0.5
V
CE(sat)
@ I
C
/I
B
= 10
1.0
2.0
5.0
10
50
100
20
I
C
, COLLECTOR CURRENT (mA)
200
500
V
BE(on)
@ V
CE
= 1.0 V
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
1.0
T
J
= 25°C
0.8
0.6
0.4
0.2
0
0.05
I
C
= 10 mA
50
mA
100 mA
250 mA
500 mA
0.1
0.2
0.5
2.0
5.0
1.0
10
I
C
, COLLECTOR CURRENT (mA)
20
50
Figure 8. “On” Voltages
Figure 9. Collector Saturation Region
http://onsemi.com
230
BC489, A, B
R
θ
VB, TEMPERATURE COEFFICIENT (mV/
°
C)
-0.8
-1.0
T
J
= 25°C
-0.8
V, VOLTAGE (VOLTS)
V
BE(sat)
@ I
C
/I
B
= 10
-0.6
-0.4
-0.2
V
CE(sat)
@ I
C
/I
B
= 10
1.0
2.0
5.0
20
50
10
100
I
C
, COLLECTOR CURRENT (mA)
200
500
0
-0.5
-1.0
-2.0
-5.0 -10 -20
-50 -100 -200
I
C
, COLLECTOR CURRENT (mA)
-500
V
BE(on)
@ V
CE
= -1.0 V
-1.2
-1.6
-2.0
-2.4
-2.8
0.5
R
θVB
for V
BE
Figure 10. Base–Emitter Temperature Coefficient
Figure 11. “On” Voltages
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
T
J
= 25°C
-0.8
-0.6
-0.4
-0.2
0
-0.05 -0.1 -0.2
R
θ
VB, TEMPERATURE COEFFICIENT (mV/
°
C)
-1.0
-0.8
-1.2
-1.6
-2.0
-2.4
R
θVB
for V
BE
I
C
= -10 mA
-50 mA -100 mA
-250 mA -500 mA
-0.5 -1.0 -2.0
-5.0
I
B
, BASE CURRENT (mA)
-10
-20
-50
-2.8
-0.5
-1.0
-2.0
-5.0 -10 -20
-50 -100 -200
I
C
, COLLECTOR CURRENT (mA)
-500
Figure 12. Collector Saturation Region
Figure 13. Base–Emitter Temperature Coefficient
http://onsemi.com
231