D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
BDX33B, BDX33C* (NPN)
BDX34B, BDX34C* (PNP)
BDX33C and BDX34C are Preferred Devices
Darlington Complementary
Silicon Power Transistors
These devices are designed for general purpose and low speed
switching applications.
Features
http://onsemi.com
•
High DC Current Gain - h
FE
= 2500 (typ.) at I
C
= 4.0
•
Collector-Emitter Sustaining Voltage at 100 mAdc
V
CEO(sus)
= 80 Vdc (min) - BDX33B, BDX334B
= 100 Vdc (min) - BDX33C, BDX334C
•
Low Collector-Emitter Saturation Voltage
V
CE(sat)
= 2.5 Vdc (max) at I
C
= 3.0 Adc
- BDX33B, 33C/34B, 34C
•
Monolithic Construction with Build-In Base-Emitter Shunt Resistors
•
Pb-Free Packages are Available*
DARLINGTON
10 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
80-100 VOLTS, 65 WATTS
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
BDX33B, BDX34B
BDX33C, BDX34C
Collector-Base Voltage
BDX33B, BDX34B
BDX33C, BDX34C
Emitter-Base Voltage
Collector Current
Base Current
Total Device Dissipation @ T
C
= 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
- Continuous
- Peak
V
EB
I
C
I
B
P
D
T
J
, T
stg
Symbol
V
CEO
80
100
V
CB
80
100
5.0
10
15
0.25
70
0.56
-65 to +150
Vdc
Adc
Adc
W
W/°C
°C
BDX3xyG
AY WW
Vdc
Value
Unit
Vdc
1
2
3
TO-220AB
CASE 221A-09
STYLE 1
MARKING DIAGRAM
THERMAL CHARACTERISTICS
Characteristics
Thermal Resistance, Junction-to-Case
Symbol
R
qJC
Max
1.78
Unit
°C/W
A
Y
WW
G
=
=
=
=
BDX3xy =
Device Code
x = 3 or 4
y = B or C
Assembly Location
Year
Work Week
Pb-Free Package
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
ORDERING INFORMATION
*For additional information on our Pb-Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
Preferred
devices are recommended choices for future use
and best overall value.
©
Semiconductor Components Industries, LLC, 2007
1
November, 2007 - Rev. 12
Publication Order Number:
BDX33B/D
ÎÎÎ Î
Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎ Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎ Î Î Î
Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ Î
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎ Î Î Î
Î Î
ÎÎÎ Î Î Î
Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎ Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎ Î Î Î
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î
Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ Î Î Î
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î Î Î Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
1. Pulse Test: Pulse Width
v
300
ms,
Duty Cycle
v
2.0%.
2. Pulse Test non repetitive: Pulse Width = 0.25 seconds.
ON CHARACTERISTICS
OFF CHARACTERISTICS
ELECTRICAL CHARACTERISTICS
(T
C
= 25°C unless otherwise noted)
Diode Forward Voltage
(I
C
= 8.0 Adc)
Base-Emitter On Voltage
(I
C
= 3.0 Adc, V
CE
= 3.0 Vdc)
Collector-Emitter Saturation Voltage
(I
C
= 3.0 Adc, I
B
= 6.0 mAdc)
DC Current Gain (Note 1)
(I
C
= 3.0 Adc, V
CE
= 3.0 Vdc)
Emitter Cutoff Current
(V
BE
= 5.0 Vdc, I
C
= 0)
Collector Cutoff Current
(V
CB
= rated V
CBO
, I
E
= 0)
Collector Cutoff Current
(V
CE
= 1/2 rated V
CEO
, I
B
= 0)
Collector-Emitter Sustaining Voltage (Note 1)
(I
C
= 100 mAdc, I
B
= 0, V
BE
= 1.5 Vdc)
Collector-Emitter Sustaining Voltage (Note 1)
(I
C
= 100 mAdc, I
B
= 0, R
BE
= 100)
Collector-Emitter Sustaining Voltage (Note 1)
(I
C
= 100 mAdc, I
B
= 0)
BDX33B, BDX33C* (NPN) BDX34B, BDX34C* (PNP)
Characteristic
PD, POWER DISSIPATION (WATTS)
20
40
60
80
0
0
20
T
C
= 25°C
T
C
= 100°C
T
C
= 25°C
T
C
= 100°C
40
Figure 1. Power Derating
http://onsemi.com
60
80
100
120
T
C
, CASE TEMPERATURE (°C)
BDX33B, 33C/34B, 34C
BDX33B, 33C/34B, 34C
BDX33B, 33C/34B, 34C
BDX33B/BDX34B
BDX33C/BDX34C
BDX33B/BDX34B
BDX33C/BDX33C
BDX33B/BDX34B
BDX33C/BDX34C
140
V
CEO(sus)
V
CER(sus)
V
CEX(sus)
Symbol
V
CE(sat)
V
BE(on)
I
CBO
I
CEO
I
EBO
h
FE
V
F
160
Min
750
80
100
80
100
80
100
-
-
-
-
-
-
-
-
Max
4.0
2.5
2.5
1.0
5.0
0.5
10
10
-
-
-
-
-
-
-
mAdc
mAdc
mAdc
Unit
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
-
2
BDX33B, BDX33C* (NPN) BDX34B, BDX34C* (PNP)
r(t) EFFECTIVE TRANSIENT
THERMAL RESISTANCE (NORMALIZED)
1.0
0.7
0.5
0.3
0.2
0.1
0.05
0.02
t
1
0.01
SINGLE PULSE
t
2
SINGLE
PULSE
P
(pk)
R
qJC
(t) = r(t) R
qJC
R
qJC
= 1.92°C/W
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t
1
T
J(pk)
- T
C
= P
(pk)
R
qJC
(t)
50
100
200 300
500
1000
D = 0.5
0.2
0.1
0.07
0.05
0.03
0.02
0.01
0.01
DUTY CYCLE, D = t
1
/t
2
0.02 0.03
0.05
0.1
0.2 0.3
0.5
1.0
2.0 3.0 5.0
10
t, TIME OR PULSE WIDTH (ms)
20
30
Figure 1. Thermal Response
20
10
IC, COLLECTOR CURRENT (AMP)
5.0
2.0
1.0
0.5
0.2
0.1
BONDING WIRE LIMITED
THERMALLY LIMITED @ T
C
= 25°C
(SINGLE PULSE)
SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATED V
CEO
BDX34B
BDX34C
2.0 3.0
5.0 7.0
10
20 30
50
V
CE
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
70 100
T
C
= 25°C
5.0 ms
1.0 ms
dc
500
ms
20
10
IC, COLLECTOR CURRENT (AMP)
5.0
2.0
1.0
0.5
0.2
0.1
T
C
= 25°C
5.0 ms
1.0 ms
dc
500
ms
100
ms
100
ms
BONDING WIRE LIMITED
THERMALLY LIMITED @ T
C
= 25°C
(SINGLE PULSE)
SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATED V
CEO
BDX33B
BDX33C
2.0 3.0
5.0 7.0
10
20 30
50
V
CE
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
70 100
0.05
0.02
1.0
0.05
0.02
1.0
Figure 2. Active-Region Safe Operating Area
There are two limitations on the power handling ability of a
transistor: average junction temperature and second
breakdown. Safe operating area curves indicate I
C
- V
CE
limits
of the transistor that must be observed for reliable operation,
i.e., the transistor must not be subjected to greater dissipation
than the curves indicate. The data of Figure 3 is based on T
J(pk)
10,000
5000
3000
2000
1000
500
300
200
100
50
30
20
10
1.0
2.0
PNP
NPN
5.0
10
20
50 100
f, FREQUENCY (kHz)
200
500 1000
T
J
= 25°C
V
CE
= 4.0 Vdc
I
C
= 3.0 Adc
C, CAPACITANCE (pF)
= 150°C; T
C
is variable depending on conditions. Second
breakdown pulse limits are valid for duty cycles to 10%
provided T
J(pk)
= 150°C. T
J(pk)
may be calculated from the
data in Figure 4. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by second breakdown.
300
T
J
= 25°C
200
hFE, SMALL-SIGNAL CURRENT GAIN
100
70
50
PNP
NPN
0.2
C
ib
C
ob
30
0.1
0.5
1.0 2.0
5.0 10
20
V
R
, REVERSE VOLTAGE (VOLTS)
50
100
Figure 3. Small-Signal Current Gain
Figure 4. Capacitance
http://onsemi.com
3
BDX33B, BDX33C* (NPN) BDX34B, BDX34C* (PNP)
NPN
BDX33B, 33C
20,000
V
CE
= 4.0 V
10,000
hFE, DC CURRENT GAIN
5000
3000
2000
1000
- 55°C
500
300
200
T
J
= 150°C
10,000
hFE, DC CURRENT GAIN
5000
3000
2000
1000
500
300
200
- 55°C
25°C
T
J
= 150°C
20,000
V
CE
= 4.0 V
PNP
BDX34B, 34C
25°C
0.1
0.2
0.3
0.5 0.7 1.0
2.0 3.0
I
C
, COLLECTOR CURRENT (AMP)
5.0 7.0 10
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0
I
C
, COLLECTOR CURRENT (AMP)
5.0 7.0 10
Figure 5. DC Current Gain
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
3.0
T
J
= 25°C
2.6
I
C
= 2.0 A
2.2
4.0 A
6.0 A
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
3.0
T
J
= 25°C
2.6
I
C
= 2.0 A
2.2
4.0 A
6.0 A
1.8
1.8
1.4
1.4
1.0
0.3
0.5 0.7 1.0
2.0
3.0
5.0 7.0 10
20
30
1.0
0.3
0.5 0.7 1.0
2.0
3.0
5.0 7.0
10
20
30
I
B
, BASE CURRENT (mA)
I
B
, BASE CURRENT (mA)
Figure 6. Collector Saturation Region
3.0
T
J
= 25°C
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
2.5
3.0
T
J
= 25°C
2.5
2.0
V
BE(sat)
@ I
C
/I
B
= 250
V
BE
@ V
CE
= 4.0 V
1.0
V
CE(sat)
@ I
C
/I
B
= 250
2.0
1.5
1.5
V
BE
@ V
CE
= 4.0 V
V
BE(sat)
@ I
C
/I
B
= 250
V
CE(sat)
@ I
C
/I
B
= 250
1.0
0.5
0.1
0.2 0.3
0.5 0.7
1.0
2.0 3.0
5.0 7.0
10
0.5
0.1
0.2 0.3
0.5 0.7
1.0
2.0 3.0
5.0 7.0
10
I
C
, COLLECTOR CURRENT (AMP)
I
C
, COLLECTOR CURRENT (AMP)
Figure 7. “On” Voltages
http://onsemi.com
4