D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
FDD6030BL/FDU6030BL
July 2001
FDD6030BL/FDU6030BL
30V N-Channel PowerTrench
®
MOSFET
General Description
This N-Channel MOSFET has been designed
specifically to improve the overall efficiency of DC/DC
converters using either synchronous or conventional
switching PWM controllers. It has been optimized for
low gate charge, low R
DS( ON)
, fast switching speed and
extremely low R
DS(ON)
in a small package.
Features
•
42 A, 30 V
R
DS(ON)
= 16 mΩ @ V
GS
= 10 V
R
DS(ON)
= 22 mΩ @ V
GS
= 4.5 V
•
Low gate charge (22 nC typical)
•
Fast switching
•
High performance trench technology for extremely
low R
DS(ON)
Applications
•
DC/DC converter
•
Motor drives
D
G
S
D-PAK
TO-252
(TO-252)
D
I-PAK
(TO-251AA)
G D S
G
S
Absolute Maximum Ratings
Symbol
V
DSS
V
GSS
I
D
Drain-Source Voltage
Gate-Source Voltage
T
A
=25
o
C unless otherwise noted
Parameter
Ratings
30
±20
(Note 3)
(Note 1a)
(Note 1a)
(Note 3)
(Note 1a)
(Note 1b)
Units
V
V
A
Continuous Drain Current @T
C
=25°C
@T
A
=25°C
Pulsed
42
10
100
50
3.8
1.6
–55 to +175
P
D
Power Dissipation
@T
C
=25°C
@T
A
=25°C
@T
A
=25°C
W
T
J
, T
STG
Operating and Storage Junction Temperature Range
°C
Thermal Characteristics
R
θJ
C
R
θJA
R
θJA
Thermal Resistance, Junction-to-Case
Thermal Resistance, Junction-to-Ambient
Thermal Resistance, Junction-to-Ambient
(Note 1)
(Note 1a)
(Note 1b)
3.0
45
96
°C/W
°C/W
°C/W
Package Marking and Ordering Information
Device Marking
FDD6030BL
FDU6030BL
Device
FDD6030BL
FDU6030BL
Package
D-PAK (TO-252)
I-PAK (TO-251)
Reel Size
13’’
Tube
Tape width
12mm
N/A
Quantity
2500 units
75
©2001
Fairchild Semiconductor Corporation
FDD6030BL/FDU6030BL Rev C(W)
FDD6030BL/FDU6030BL
Electrical Characteristics
Symbol
W
DSS
I
AR
BV
DSS
∆BV
DSS
∆T
J
I
DSS
I
GSSF
I
GSSR
T
A
= 25°C unless otherwise noted
Parameter
Drain-Source Avalanche Energy
Drain-Source Avalanche Current
Test Conditions
Single Pulse,
V
DD
= 15 V
Min
Typ Max
130
10
Units
mJ
A
V
Drain-Source Avalanche Ratings
(Note 2)
Off Characteristics
Drain–Source Breakdown Voltage V
GS
= 0 V,
I
D
= 250
µA
Breakdown Voltage Temperature I
D
= 250
µA,Referenced
to 25°C
Coefficient
Zero Gate Voltage Drain Current
Gate–Body Leakage, Forward
Gate–Body Leakage, Reverse
(Note 2)
30
22
1
100
–100
mV/°C
µA
nA
nA
V
DS
= 24 V,
V
GS
= 20 V,
V
GS
= –20 V,
V
GS
= 0 V
V
DS
= 0 V
V
DS
= 0 V
On Characteristics
V
GS(th)
∆V
GS(th)
∆T
J
R
DS(on)
Gate Threshold Voltage
Gate Threshold Voltage
Temperature Coefficient
Static Drain–Source
On–Resistance
On–State Drain Current
Forward Transconductance
V
DS
= V
GS
,
I
D
= 250
µA
I
D
= 250
µA,
Referenced to 25°C
V
GS
V
GS
V
GS
V
GS
= 10 V,
= 4.5 V,
= 10 V,
= 10 V,
I
D
= 10 A
I
D
= 8.4 A
I
D
= 10 A, T
J
=125°C
V
DS
= 5 V
I
D
= 10 A
1
1.6
–4
12
17
19
3
V
mV/°C
mΩ
16
22
26
I
D(on)
g
FS
50
29
A
S
V
DS
= 10 V,
Dynamic Characteristics
C
iss
C
oss
C
rss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
(Note 2)
V
DS
= 15 V,
f = 1.0 MHz
V
GS
= 0 V,
1143
249
107
pF
pF
pF
Switching Characteristics
t
d(on)
t
r
t
d(off)
t
f
Q
g
Q
gs
Q
gd
Turn–On Delay Time
Turn–On Rise Time
Turn–Off Delay Time
Turn–Off Fall Time
Total Gate Charge
Gate–Source Charge
Gate–Drain Charge
6
V
DD
= 15 V,
V
GS
= 10 V,
I
D
= 1 A,
R
GEN
= 6
Ω
10
18
5
V
DS
= 15V,
V
GS
= 10 V
I
D
= 10 A,
22
3
4
12
18
29
12
31
ns
ns
ns
ns
nC
nC
nC
FDD6030BL/FDU6030BL Rev. C(W)
FDD6030BL/FDU6030BL
Electrical Characteristics
Symbol
I
S
V
SD
Notes:
T
A
= 25°C unless otherwise noted
Parameter
Test Conditions
Min
Typ Max
3.2
1.2
Units
A
V
Drain–Source Diode Characteristics and Maximum Ratings
Maximum Continuous Drain–Source Diode Forward Current
Drain–Source Diode Forward
V
GS
= 0 V, I
S
= 3.2 A
Voltage
(Note 2)
0.7
1.
R
θJA
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of
the drain pins. R
θJC
is guaranteed by design while R
θCA
is determined by the user's board design.
a) R
θJA
= 45°C/W when mounted on a
1in
2
pad of 2 oz copper
b) R
θJA
= 96°C/W when mounted
on a minimum pad.
Scale 1 : 1 on letter size paper
2.
Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%
P
D
R
DS(ON)
3.
Maximum current is calculated as:
where P
D
is maximum power dissipation at T
C
= 25°C and R
DS(on)
is at T
J(max)
and V
GS
= 10V. Package current limitation is 21A
FDD6030BL/FDU6030BL Rev. C(W)
FDD6030BL/FDU6030BL
Typical Characteristics
80
V
GS
= 10V
6.0V
5.0V
R
DS(ON)
, NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
4.5V
2.2
V
GS
= 3.5V
2
1.8
4.0V
1.6
1.4
6.0V
1.2
1
0.8
0
1
2
3
4
5
0
20
40
I
D
, DRAIN CURRENT (A)
60
80
V
DS
, DRAIN-SOURCE VOLTAGE (V)
10V
4.5V
5.0V
I
D
, DRAIN CURRENT (A)
60
4.0V
40
3.5V
20
3.0V
0
Figure 1. On-Region Characteristics
Figure 2. On-Resistance Variation with
Drain Current and Gate Voltage
0.06
2
R
DS(ON)
NORMALIZED
,
DRAIN-SOURCE ON-RESISTANCE
1.8
1.6
1.4
1.2
1
0.8
0.6
-50
-25
0
25
50
75
100
125
150
175
T
J
, JUNCTION TEMPERATURE (
o
C)
I
D
= 10A
V
GS
= 10V
I
D
= 5A
R
DS(ON)
ON-RESISTANCE (OHM)
,
0.05
0.04
T
A
= 125
o
C
0.03
0.02
T
A
= 25
o
C
0.01
0
2
4
6
8
10
V
GS
, GATE TO SOURCE VOLTAGE (V)
Figure 3. On-Resistance Variation with
Temperature
60
V
DS
= 5V
50
I
D
, DRAIN CURRENT (A)
40
T
A
=-55
o
C
25
o
C
I
S
, REVERSE DRAIN CURRENT (A)
125
o
C
100
Figure 4. On-Resistance Variation with
Gate-to-Source Voltage
V
GS
= 0V
10
T
A
= 125
o
C
1
25
o
C
0.1
-55
o
C
0.01
30
20
10
0.001
0
1
2
3
4
5
V
GS
, GATE TO SOURCE VOLTAGE (V)
0.0001
0
0.2
0.4
0.6
0.8
1
1.2
1.4
V
SD
, BODY DIODE FORWARD VOLTAGE (V)
Figure 5. Transfer Characteristics
Figure 6. Body Diode Forward Voltage Variation
with Source Current and Temperature
FDD6030BL/FDU6030BL Rev. C(W)