April 1999
FDS6961A
Dual N-Channel Logic Level PowerTrench
TM
MOSFET
General Description
Features
3.5 A, 30 V. R
DS(ON)
= 0.090
Ω
@ V
GS
= 10 V
R
DS(ON)
= 0.140
Ω
@ V
GS
= 4.5 V.
Fast switching speed.
Low gate charge (2.1nC typical).
High performance trench technology for extremely low
R
DS(ON)
.
High power and current handling capability.
These N-Channel Logic Level MOSFETs are
produced using Fairchild Semiconductor's
advanced PowerTrench process that has been
especially tailored to minimize the on-state
resistance and yet maintain superior switching
performance.
These devices are well suited for low voltage
and battery powered applications where low
in-line power loss and fast switching
are
required.
SOT-23
SuperSOT
TM
-6
SuperSOT
TM
-8
SO-8
SOT-223
SOIC-16
D2
D1
D1
D2
S
FD 1A
6
69
S2
G2
5
6
7
4
3
2
1
SO-8
pin
1
S1
G1
8
Absolute Maximum Ratings
Symbol
Parameter
T
A
= 25
o
C unless other wise noted
Ratings
Units
V
DSS
V
GSS
I
D
P
D
Drain-Source Voltage
Gate-Source Voltage
Drain Current - Continuous
- Pulsed
Power Dissipation for Single Operation
Power Dissipation for Single Operation
(Note 1)
(Note 1a)
(Note 1b)
(Note 1c)
(Note 1a)
30
±20
3.5
14
2
1.6
1
0.9
-55 to 150
V
V
A
W
T
J
,T
STG
R
θ
JA
R
θ
JC
Operating and Storage Temperature Range
°C
THERMAL CHARACTERISTICS
Thermal Resistance, Junction-to-Ambient
Thermal Resistance, Junction-to-Case
(Note 1a)
(Note 1)
78
40
°C/W
°C/W
FDS6961A Rev.C
© 1999 Fairchild Semiconductor Corporation
Electrical Characteristics
Symbol
Parameter
OFF CHARACTERISTICS
( T
A
= 25
O
C unless otherwise noted )
Conditions
Min
Typ
Max
Units
BV
DSS
Drain-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Zero Gate Voltage Drain Current
V
GS
= 0 V, I
D
= 250 µA
I
D
= 250 µA, Referenced to 25 C
V
DS
= 24 V, V
GS
= 0 V
T
J
= 55°C
V
GS
= 20 V, V
DS
= 0 V
V
GS
= -20 V, V
DS
= 0 V
V
DS
= V
GS
, I
D
= 250 µA
I
D
= 250 µA, Referenced to 25 C
V
GS
= 10 V, I
D
= 3.5 A
T
J
=125°C
V
GS
= 4.5 V, I
D
= 2.8 A
o
o
30
25
1
10
100
-100
1
1.8
-5
0.076
0.11
0.107
14
6
220
50
20
0.09
0.155
0.14
3
V
mV/
o
C
µA
µA
nA
nA
V
mV/
o
C
∆
BV
DSS
/
∆
T
J
I
DSS
I
GSSF
I
GSSR
V
GS(th)
Gate - Body Leakage, Forward
Gate - Body Leakage, Reverse
(Note 2)
ON CHARACTERISTICS
Gate Threshold Voltage
Gate Threshold Voltage Temp. Coefficient
Static Drain-Source On-Resistance
∆
V
GS(th)
/
∆
T
J
R
DS(ON)
Ω
I
D(ON)
g
FS
C
iss
C
oss
C
rss
t
D(on)
t
r
t
D(off)
t
f
Q
g
Q
gs
Q
gd
I
S
V
SD
Notes:
On-State Drain Current
Forward Transconductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
(Note 2)
V
GS
= 10 V, V
DS
= 5 V
V
DS
= 15 V, I
D
= 3.5 A
V
DS
= 15 V, V
GS
= 0 V,
f = 1.0 MHz
A
S
pF
pF
pF
6
22
14
6
4
ns
ns
ns
ns
nC
nC
nC
1.3
A
V
DYNAMIC CHARACTERISTICS
SWITCHING CHARACTERISTICS
Turn - On Delay Time
Turn - On Rise Time
Turn - Off Delay Time
Turn - Off Fall Time
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
V
DS
= 15 V, I
D
= 1 A
V
GS
= 10 V , R
GEN
=
6
Ω
3
11
7
3
V
DS
= 15 V, I
D
= 3.5 A,
V
GS
= 5 V
2.1
0.8
0.7
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
Maximum Continuous Drain-Source Diode Forward Current
Drain-Source Diode Forward Voltage
V
GS
= 0 V, I
S
= 1.3 A
(Note 2)
0.73
1.2
1. R
θ
JA
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R
θ
JC
is
guaranteed by design while R
θ
CA
is determined by the user's board design.
a. 78
O
C/W on a 0.5 in
2
pad of 2oz copper.
b. 125
O
C/W on a 0.02 in
2
pad of 2oz copper.
c. 135
O
C/W on a minimum
mounting pad.
Scale 1 : 1 on letter size paper
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
FDS6961A Rev.C
Typical Electrical Characteristics
15
I
D
, DRAIN-SOURCE CURRENT (A)
DRAIN-SOURCE ON-RESISTANCE
2.5
12
R
DS(ON)
, NORMALIZED
V
GS
= 10V
6.0V
4.5V
2
V
GS
= 3.5V
4.0 V
9
4.0V
6
1.5
4.5 V
5.0V
6.0V
10V
3.5V
1
3
3.0V
0
0
1
2
3
4
5
V
DS
, DRAIN-SOURCE VOLTAGE (V)
0.5
0
3
6
9
12
15
I
D
, DRAIN CURRENT (A)
Figure 1. On-Region Characteristics.
Figure 2. On-Resistance Variation with
Drain Current and Gate Voltage.
0.3
R
DS(ON)
, ON-RESISTANCE (OHM)
1.6
DRAIN-SOURCE ON-RESISTANCE
R
DS(ON)
, NORMALIZED
1.4
I
D
= 3.5A
V
GS
= 10V
I
D
= 3.5A
0.24
1.2
0.18
125°C
0.12
1
0.8
0.06
25°C
0.6
-50
0
-25
0
25
50
75
100
125
150
T , JUNCTION TEMPERATURE (°C)
J
2
4
6
8
10
V
GS
, GATE TO SOURCE VOLTAGE (V)
Figure 3. On-Resistance Variation
Temperature.
with
Figure 4. On-Resistance Variation with
Gate-to-Source Voltage.
8
10
I
S
, REVERSE DRAIN CURRENT (A)
V
DS
=5.0V
I
D
, DRAIN CURRENT (A)
6
T
J
= -55°C
25°C
125°C
V
GS
= 0V
1
T
J
= 125°C
25°C
4
0.1
-55°C
0.01
2
0
1
V
2
GS
3
4
5
0.001
0.2
0.4
0.6
0.8
1
1.2
, GATE TO SOURCE VOLTAGE (V)
V
SD
, BODY DIODE FORWARD VOLTAGE (V)
Figure 5. Transfer Characteristics.
Figure 6. Body Diode Forward Voltage
Variation with Source Current
and Temperature.
FDS6961A Rev.C
Typical Electrical Characteristics
10
V
GS
, GATE-SOURCE VOLTAGE (V)
500
I
D
= 3.5A
8
V
DS
= 5V
10V
15V
CAPACITANCE (pF)
200
100
50
C iss
6
Coss
f = 1 MHz
V
GS
= 0 V
0.2
0.5
1
2
5
10
4
2
20
10
0.1
C
rss
0
30
0
1
2
Q
g
, GATE CHARGE (nC)
3
4
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Gate Charge Characteristics.
30
10
I
D
, DRAIN CURRENT (A)
5
2
1
0.5
IT
IM
)L
ON
S(
RD
Figure 8. Capacitance Characteristics.
100
us
1m
s
POWER (W)
30
25
20
15
10
5
0
0.01
10m
s
100
ms
1s
10s
DC
SINGLE PULSE
R
θ
JA
=135 °C/W
T
A
= 25°C
0.1
0.05
V
GS
=10V
SINGLE PULSE
R
θ
JA
= 135°C/W
A
T
A
= 25°C
0.2
0.5
1
2
0.01
0.1
5
10
30
50
0.1
0.5
10
50 100
300
V
DS
, DRAIN-SOURCE VOLTAGE (V)
SINGLE PULSE TIME (SEC)
Figure 9. Maximum Safe Operating Area.
Figure 10. Single Pulse Maximum Power
Dissipation.
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
0.002
0.001
0.0001
0.001
0.01
0.1
t
1
, TIME (sec)
1
10
D = 0.5
0.2
0.1
0.05
0.02
0.01
Single Pulse
P(pk)
R
θ
JA
(t) = r(t) * R
θ
JA
R
θ
JA
=135° C/W
t
1
t
2
T
J
- T
A
= P * R
θ
JA (t)
Duty Cycle, D = t
1
/t
2
100
300
Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in note 1c.
Transient thermal response will change depending on the circuit board design.
FDS6961A Rev.C
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
CoolFET™
CROSSVOLT™
E
2
CMOS
TM
FACT™
FACT Quiet Series™
FAST
®
FASTr™
GTO™
HiSeC™
DISCLAIMER
ISOPLANAR™
MICROWIRE™
POP™
PowerTrench™
QFET™
QS™
Quiet Series™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
TinyLogic™
UHC™
VCX™
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Advance Information
Product Status
Formative or
In Design
Definition
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.